Spaces:
Running
Running
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
r""" | |
@DATE: 2024/9/5 19:25 | |
@File: utils.py | |
@IDE: pycharm | |
@Description: | |
通用图像处理工具 | |
""" | |
import cv2 | |
import numpy as np | |
def resize_image_esp(input_image, esp=2000): | |
""" | |
输入: | |
input_path:numpy 图片 | |
esp:限制的最大边长 | |
""" | |
# resize 函数=>可以让原图压缩到最大边为 esp 的尺寸 (不改变比例) | |
width = input_image.shape[0] | |
length = input_image.shape[1] | |
max_num = max(width, length) | |
if max_num > esp: | |
print("Image resizing...") | |
if width == max_num: | |
length = int((esp / width) * length) | |
width = esp | |
else: | |
width = int((esp / length) * width) | |
length = esp | |
print(length, width) | |
im_resize = cv2.resize( | |
input_image, (length, width), interpolation=cv2.INTER_AREA | |
) | |
return im_resize | |
else: | |
return input_image | |
def get_box( | |
image: np.ndarray, | |
model: int = 1, | |
correction_factor=None, | |
thresh: int = 127, | |
): | |
""" | |
本函数能够实现输入一张四通道图像,返回图像中最大连续非透明面积的区域的矩形坐标 | |
本函数将采用 opencv 内置函数来解析整个图像的 mask,并提供一些参数,用于读取图像的位置信息 | |
Args: | |
image: 四通道矩阵图像 | |
model: 返回值模式 | |
correction_factor: 提供一些边缘扩张接口,输入格式为 list 或者 int:[up, down, left, right]。 | |
举个例子,假设我们希望剪切出的矩形框左边能够偏左 1 个像素,则输入 [0, 0, 1, 0]; | |
如果希望右边偏右 1 个像素,则输入 [0, 0, 0, 1] | |
如果输入为 int,则默认只会对左右两边做拓展,比如输入 2,则和 [0, 0, 2, 2] 是等效的 | |
thresh: 二值化阈值,为了保持一些羽化效果,thresh 必须要小 | |
Returns: | |
model 为 1 时,将会返回切割出的矩形框的四个坐标点信息 | |
model 为 2 时,将会返回矩形框四边相距于原图四边的距离 | |
""" | |
# ------------ 数据格式规范部分 -------------- # | |
# 输入必须为四通道 | |
if correction_factor is None: | |
correction_factor = [0, 0, 0, 0] | |
if not isinstance(image, np.ndarray) or len(cv2.split(image)) != 4: | |
raise TypeError("输入的图像必须为四通道 np.ndarray 类型矩阵!") | |
# correction_factor 规范化 | |
if isinstance(correction_factor, int): | |
correction_factor = [0, 0, correction_factor, correction_factor] | |
elif not isinstance(correction_factor, list): | |
raise TypeError("correction_factor 必须为 int 或者 list 类型!") | |
# ------------ 数据格式规范完毕 -------------- # | |
# 分离 mask | |
_, _, _, mask = cv2.split(image) | |
# mask 二值化处理 | |
_, mask = cv2.threshold(mask, thresh=thresh, maxval=255, type=0) | |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
temp = np.ones(image.shape, np.uint8) * 255 | |
cv2.drawContours(temp, contours, -1, (0, 0, 255), -1) | |
contours_area = [] | |
for cnt in contours: | |
contours_area.append(cv2.contourArea(cnt)) | |
idx = contours_area.index(max(contours_area)) | |
x, y, w, h = cv2.boundingRect(contours[idx]) # 框出图像 | |
# ------------ 开始输出数据 -------------- # | |
height, width, _ = image.shape | |
y_up = y - correction_factor[0] if y - correction_factor[0] >= 0 else 0 | |
y_down = ( | |
y + h + correction_factor[1] | |
if y + h + correction_factor[1] < height | |
else height - 1 | |
) | |
x_left = x - correction_factor[2] if x - correction_factor[2] >= 0 else 0 | |
x_right = ( | |
x + w + correction_factor[3] | |
if x + w + correction_factor[3] < width | |
else width - 1 | |
) | |
if model == 1: | |
# model=1,将会返回切割出的矩形框的四个坐标点信息 | |
return [y_up, y_down, x_left, x_right] | |
elif model == 2: | |
# model=2, 将会返回矩形框四边相距于原图四边的距离 | |
return [y_up, height - y_down, x_left, width - x_right] | |
else: | |
raise EOFError("请选择正确的模式!") | |
def detect_distance(value, crop_height, max=0.06, min=0.04): | |
""" | |
检测人头顶与照片顶部的距离是否在适当范围内。 | |
输入:与顶部的差值 | |
输出:(status, move_value) | |
status=0 不动 | |
status=1 人脸应向上移动(裁剪框向下移动) | |
status-2 人脸应向下移动(裁剪框向上移动) | |
--------------------------------------- | |
value:头顶与照片顶部的距离 | |
crop_height: 裁剪框的高度 | |
max: 距离的最大值 | |
min: 距离的最小值 | |
--------------------------------------- | |
""" | |
value = value / crop_height # 头顶往上的像素占图像的比例 | |
if min <= value <= max: | |
return 0, 0 | |
elif value > max: | |
# 头顶往上的像素比例高于 max | |
move_value = value - max | |
move_value = int(move_value * crop_height) | |
# print("上移{}".format(move_value)) | |
return 1, move_value | |
else: | |
# 头顶往上的像素比例低于 min | |
move_value = min - value | |
move_value = int(move_value * crop_height) | |
# print("下移{}".format(move_value)) | |
return -1, move_value | |
def cutting_rect_pan( | |
x1, y1, x2, y2, width, height, L1, L2, L3, clockwise, standard_size | |
): | |
""" | |
本函数的功能是对旋转矫正结果图的裁剪框进行修正 ———— 解决"旋转三角形"现象。 | |
Args: | |
- x1: int, 裁剪框左上角的横坐标 | |
- y1: int, 裁剪框左上角的纵坐标 | |
- x2: int, 裁剪框右下角的横坐标 | |
- y2: int, 裁剪框右下角的纵坐标 | |
- width: int, 待裁剪图的宽度 | |
- height:int, 待裁剪图的高度 | |
- L1: CLassObject, 根据旋转点连线所构造函数 | |
- L2: CLassObject, 根据旋转点连线所构造函数 | |
- L3: ClassObject, 一个特殊裁切点的坐标 | |
- clockwise: int, 旋转时针状态 | |
- standard_size: tuple, 标准照的尺寸 | |
Returns: | |
- x1: int, 新的裁剪框左上角的横坐标 | |
- y1: int, 新的裁剪框左上角的纵坐标 | |
- x2: int, 新的裁剪框右下角的横坐标 | |
- y2: int, 新的裁剪框右下角的纵坐标 | |
- x_bias: int, 裁剪框横坐标方向上的计算偏置量 | |
- y_bias: int, 裁剪框纵坐标方向上的计算偏置量 | |
""" | |
# 用于计算的裁剪框坐标x1_cal,x2_cal,y1_cal,y2_cal(如果裁剪框超出了图像范围,则缩小直至在范围内) | |
x1_std = x1 if x1 > 0 else 0 | |
x2_std = x2 if x2 < width else width | |
# y1_std = y1 if y1 > 0 else 0 | |
y2_std = y2 if y2 < height else height | |
# 初始化x和y的计算偏置项x_bias和y_bias | |
x_bias = 0 | |
y_bias = 0 | |
# 如果顺时针偏转 | |
if clockwise == 1: | |
if y2 > L1.forward_x(x1_std): | |
y_bias = int(-(y2_std - L1.forward_x(x1_std))) | |
if y2 > L2.forward_x(x2_std): | |
x_bias = int(-(x2_std - L2.forward_y(y2_std))) | |
x2 = x2_std + x_bias | |
if x1 < L3.x: | |
x1 = L3.x | |
# 如果逆时针偏转 | |
else: | |
if y2 > L1.forward_x(x1_std): | |
x_bias = int(L1.forward_y(y2_std) - x1_std) | |
if y2 > L2.forward_x(x2_std): | |
y_bias = int(-(y2_std - L2.forward_x(x2_std))) | |
x1 = x1_std + x_bias | |
if x2 > L3.x: | |
x2 = L3.x | |
# 计算裁剪框的y的变化 | |
y2 = int(y2_std + y_bias) | |
new_cut_width = x2 - x1 | |
new_cut_height = int(new_cut_width / standard_size[1] * standard_size[0]) | |
y1 = y2 - new_cut_height | |
return x1, y1, x2, y2, x_bias, y_bias | |