Spaces:
Sleeping
Sleeping
from diffusers import (StableDiffusionXLImg2ImgPipeline, AutoencoderKL) | |
from diffusers.utils import load_image | |
import torch | |
import time | |
import utilities as u | |
import card_generator as card | |
from PIL import Image | |
pipe = None | |
start_time = time.time() | |
torch.backends.cuda.matmul.allow_tf32 = True | |
model_path = ("./models/stable-diffusion/card-generator-v1.safetensors") | |
lora_path = "./models/stable-diffusion/Loras/blank-card-template-5.safetensors" | |
detail_lora_path = "./models/stable-diffusion/Loras/add-detail-xl.safetensors" | |
mimic_lora_path = "./models/stable-diffusion/Loras/EnvyMimicXL01.safetensors" | |
temp_image_path = "./image_temp/" | |
card_pre_prompt = " blank magic card,high resolution, detailed intricate high quality border, textbox, high quality detailed magnum opus drawing of a " | |
negative_prompts = "text, words, numbers, letters" | |
image_list = [] | |
def load_img_gen(prompt, item, mimic = None): | |
prompt = card_pre_prompt + item + ' ' + prompt | |
print(prompt) | |
# image_path = f"{user_input_template}" | |
# init_image = load_image(image_path).convert("RGB") | |
pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(model_path, | |
custom_pipeline="low_stable_diffusion", | |
torch_dtype=torch.float16, | |
variant="fp16").to("cuda") | |
# Load LoRAs for controlling image | |
#pipe.load_lora_weights(lora_path, weight_name = "blank-card-template-5.safetensors",adapter_name = 'blank-card-template') | |
pipe.load_lora_weights(detail_lora_path, weight_name = "add-detail-xl.safetensors", adapter_name = "add-detail-xl") | |
# If mimic keyword has been detected, load the mimic LoRA and set adapter values | |
if mimic: | |
pipe.load_lora_weights(mimic_lora_path, weight_name = "EnvyMimicXL01.safetensors", adapter_name = "EnvyMimicXL") | |
pipe.set_adapters(['blank-card-template', "add-detail-xl", "EnvyMimicXL"], adapter_weights = [0.9,0.9,1.0]) | |
else : | |
pipe.set_adapters([ "add-detail-xl"], adapter_weights = [0.9]) | |
pipe.enable_vae_slicing() | |
return pipe, prompt | |
def preview_and_generate_image(x,pipe, prompt, user_input_template, item): | |
img_start = time.time() | |
image = pipe(prompt=prompt, | |
strength = .9, | |
guidance_scale = 5, | |
image= user_input_template, | |
negative_promt = negative_prompts, | |
num_inference_steps=40, | |
height = 1024, width = 768).images[0] | |
image = image.save(temp_image_path+str(x) + f"{item}.png") | |
output_image_path = temp_image_path+str(x) + f"{item}.png" | |
img_time = time.time() - img_start | |
img_its = 50/img_time | |
print(f"image gen time = {img_time} and {img_its} it/s") | |
# Delete the image variable to keep VRAM open to load the LLM | |
del image | |
print(f"Memory after del {torch.cuda.memory_allocated()}") | |
print(image_list) | |
total_time = time.time() - start_time | |
print(total_time) | |
return output_image_path | |