Spaces:
Build error
Build error
TheComputerMan
commited on
Commit
·
8aa300f
1
Parent(s):
5e25351
Upload PositionalEncoding.py
Browse files- PositionalEncoding.py +166 -0
PositionalEncoding.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Taken from ESPNet
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class PositionalEncoding(torch.nn.Module):
|
11 |
+
"""
|
12 |
+
Positional encoding.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
d_model (int): Embedding dimension.
|
16 |
+
dropout_rate (float): Dropout rate.
|
17 |
+
max_len (int): Maximum input length.
|
18 |
+
reverse (bool): Whether to reverse the input position.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
22 |
+
"""
|
23 |
+
Construct an PositionalEncoding object.
|
24 |
+
"""
|
25 |
+
super(PositionalEncoding, self).__init__()
|
26 |
+
self.d_model = d_model
|
27 |
+
self.reverse = reverse
|
28 |
+
self.xscale = math.sqrt(self.d_model)
|
29 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
30 |
+
self.pe = None
|
31 |
+
self.extend_pe(torch.tensor(0.0, device=d_model.device).expand(1, max_len))
|
32 |
+
|
33 |
+
def extend_pe(self, x):
|
34 |
+
"""
|
35 |
+
Reset the positional encodings.
|
36 |
+
"""
|
37 |
+
if self.pe is not None:
|
38 |
+
if self.pe.size(1) >= x.size(1):
|
39 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
40 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
41 |
+
return
|
42 |
+
pe = torch.zeros(x.size(1), self.d_model)
|
43 |
+
if self.reverse:
|
44 |
+
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
45 |
+
else:
|
46 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
47 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32) * -(math.log(10000.0) / self.d_model))
|
48 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
49 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
50 |
+
pe = pe.unsqueeze(0)
|
51 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
"""
|
55 |
+
Add positional encoding.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
62 |
+
"""
|
63 |
+
self.extend_pe(x)
|
64 |
+
x = x * self.xscale + self.pe[:, : x.size(1)]
|
65 |
+
return self.dropout(x)
|
66 |
+
|
67 |
+
|
68 |
+
class RelPositionalEncoding(torch.nn.Module):
|
69 |
+
"""
|
70 |
+
Relative positional encoding module (new implementation).
|
71 |
+
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
72 |
+
See : Appendix B in https://arxiv.org/abs/1901.02860
|
73 |
+
Args:
|
74 |
+
d_model (int): Embedding dimension.
|
75 |
+
dropout_rate (float): Dropout rate.
|
76 |
+
max_len (int): Maximum input length.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
80 |
+
"""
|
81 |
+
Construct an PositionalEncoding object.
|
82 |
+
"""
|
83 |
+
super(RelPositionalEncoding, self).__init__()
|
84 |
+
self.d_model = d_model
|
85 |
+
self.xscale = math.sqrt(self.d_model)
|
86 |
+
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
87 |
+
self.pe = None
|
88 |
+
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
89 |
+
|
90 |
+
def extend_pe(self, x):
|
91 |
+
"""Reset the positional encodings."""
|
92 |
+
if self.pe is not None:
|
93 |
+
# self.pe contains both positive and negative parts
|
94 |
+
# the length of self.pe is 2 * input_len - 1
|
95 |
+
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
96 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
97 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
98 |
+
return
|
99 |
+
# Suppose `i` means to the position of query vecotr and `j` means the
|
100 |
+
# position of key vector. We use position relative positions when keys
|
101 |
+
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
102 |
+
pe_positive = torch.zeros(x.size(1), self.d_model, device=x.device)
|
103 |
+
pe_negative = torch.zeros(x.size(1), self.d_model, device=x.device)
|
104 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32, device=x.device).unsqueeze(1)
|
105 |
+
div_term = torch.exp(torch.arange(0, self.d_model, 2, dtype=torch.float32, device=x.device) * -(math.log(10000.0) / self.d_model))
|
106 |
+
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
107 |
+
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
108 |
+
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
109 |
+
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
110 |
+
|
111 |
+
# Reserve the order of positive indices and concat both positive and
|
112 |
+
# negative indices. This is used to support the shifting trick
|
113 |
+
# as in https://arxiv.org/abs/1901.02860
|
114 |
+
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
115 |
+
pe_negative = pe_negative[1:].unsqueeze(0)
|
116 |
+
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
117 |
+
self.pe = pe.to(dtype=x.dtype)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
"""
|
121 |
+
Add positional encoding.
|
122 |
+
Args:
|
123 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
124 |
+
Returns:
|
125 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
126 |
+
"""
|
127 |
+
self.extend_pe(x)
|
128 |
+
x = x * self.xscale
|
129 |
+
pos_emb = self.pe[:, self.pe.size(1) // 2 - x.size(1) + 1: self.pe.size(1) // 2 + x.size(1), ]
|
130 |
+
return self.dropout(x), self.dropout(pos_emb)
|
131 |
+
|
132 |
+
|
133 |
+
class ScaledPositionalEncoding(PositionalEncoding):
|
134 |
+
"""
|
135 |
+
Scaled positional encoding module.
|
136 |
+
|
137 |
+
See Sec. 3.2 https://arxiv.org/abs/1809.08895
|
138 |
+
|
139 |
+
Args:
|
140 |
+
d_model (int): Embedding dimension.
|
141 |
+
dropout_rate (float): Dropout rate.
|
142 |
+
max_len (int): Maximum input length.
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self, d_model, dropout_rate, max_len=5000):
|
147 |
+
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
|
148 |
+
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
|
149 |
+
|
150 |
+
def reset_parameters(self):
|
151 |
+
self.alpha.data = torch.tensor(1.0)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
"""
|
155 |
+
Add positional encoding.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
x (torch.Tensor): Input tensor (batch, time, `*`).
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
torch.Tensor: Encoded tensor (batch, time, `*`).
|
162 |
+
|
163 |
+
"""
|
164 |
+
self.extend_pe(x)
|
165 |
+
x = x + self.alpha * self.pe[:, : x.size(1)]
|
166 |
+
return self.dropout(x)
|