TheComputerMan commited on
Commit
525a4f7
·
1 Parent(s): cb3973b

Upload VariancePredictor.py

Browse files
Files changed (1) hide show
  1. VariancePredictor.py +65 -0
VariancePredictor.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2019 Tomoki Hayashi
2
+ # MIT License (https://opensource.org/licenses/MIT)
3
+ # Adapted by Florian Lux 2021
4
+
5
+ from abc import ABC
6
+
7
+ import torch
8
+
9
+ from Layers.LayerNorm import LayerNorm
10
+
11
+
12
+ class VariancePredictor(torch.nn.Module, ABC):
13
+ """
14
+ Variance predictor module.
15
+
16
+ This is a module of variance predictor described in `FastSpeech 2:
17
+ Fast and High-Quality End-to-End Text to Speech`_.
18
+
19
+ .. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
20
+ https://arxiv.org/abs/2006.04558
21
+
22
+ """
23
+
24
+ def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, bias=True, dropout_rate=0.5, ):
25
+ """
26
+ Initilize duration predictor module.
27
+
28
+ Args:
29
+ idim (int): Input dimension.
30
+ n_layers (int, optional): Number of convolutional layers.
31
+ n_chans (int, optional): Number of channels of convolutional layers.
32
+ kernel_size (int, optional): Kernel size of convolutional layers.
33
+ dropout_rate (float, optional): Dropout rate.
34
+ """
35
+ super().__init__()
36
+ self.conv = torch.nn.ModuleList()
37
+ for idx in range(n_layers):
38
+ in_chans = idim if idx == 0 else n_chans
39
+ self.conv += [
40
+ torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), torch.nn.ReLU(),
41
+ LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
42
+ self.linear = torch.nn.Linear(n_chans, 1)
43
+
44
+ def forward(self, xs, x_masks=None):
45
+ """
46
+ Calculate forward propagation.
47
+
48
+ Args:
49
+ xs (Tensor): Batch of input sequences (B, Tmax, idim).
50
+ x_masks (ByteTensor, optional):
51
+ Batch of masks indicating padded part (B, Tmax).
52
+
53
+ Returns:
54
+ Tensor: Batch of predicted sequences (B, Tmax, 1).
55
+ """
56
+ xs = xs.transpose(1, -1) # (B, idim, Tmax)
57
+ for f in self.conv:
58
+ xs = f(xs) # (B, C, Tmax)
59
+
60
+ xs = self.linear(xs.transpose(1, 2)) # (B, Tmax, 1)
61
+
62
+ if x_masks is not None:
63
+ xs = xs.masked_fill(x_masks, 0.0)
64
+
65
+ return xs