Spaces:
Build error
Build error
TheComputerMan
commited on
Commit
·
525a4f7
1
Parent(s):
cb3973b
Upload VariancePredictor.py
Browse files- VariancePredictor.py +65 -0
VariancePredictor.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
from abc import ABC
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from Layers.LayerNorm import LayerNorm
|
10 |
+
|
11 |
+
|
12 |
+
class VariancePredictor(torch.nn.Module, ABC):
|
13 |
+
"""
|
14 |
+
Variance predictor module.
|
15 |
+
|
16 |
+
This is a module of variance predictor described in `FastSpeech 2:
|
17 |
+
Fast and High-Quality End-to-End Text to Speech`_.
|
18 |
+
|
19 |
+
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
|
20 |
+
https://arxiv.org/abs/2006.04558
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, bias=True, dropout_rate=0.5, ):
|
25 |
+
"""
|
26 |
+
Initilize duration predictor module.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
idim (int): Input dimension.
|
30 |
+
n_layers (int, optional): Number of convolutional layers.
|
31 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
32 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
33 |
+
dropout_rate (float, optional): Dropout rate.
|
34 |
+
"""
|
35 |
+
super().__init__()
|
36 |
+
self.conv = torch.nn.ModuleList()
|
37 |
+
for idx in range(n_layers):
|
38 |
+
in_chans = idim if idx == 0 else n_chans
|
39 |
+
self.conv += [
|
40 |
+
torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), torch.nn.ReLU(),
|
41 |
+
LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
|
42 |
+
self.linear = torch.nn.Linear(n_chans, 1)
|
43 |
+
|
44 |
+
def forward(self, xs, x_masks=None):
|
45 |
+
"""
|
46 |
+
Calculate forward propagation.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
50 |
+
x_masks (ByteTensor, optional):
|
51 |
+
Batch of masks indicating padded part (B, Tmax).
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Tensor: Batch of predicted sequences (B, Tmax, 1).
|
55 |
+
"""
|
56 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
57 |
+
for f in self.conv:
|
58 |
+
xs = f(xs) # (B, C, Tmax)
|
59 |
+
|
60 |
+
xs = self.linear(xs.transpose(1, 2)) # (B, Tmax, 1)
|
61 |
+
|
62 |
+
if x_masks is not None:
|
63 |
+
xs = xs.masked_fill(x_masks, 0.0)
|
64 |
+
|
65 |
+
return xs
|