Spaces:
Build error
Build error
TheComputerMan
commited on
Commit
•
1e3e10b
1
Parent(s):
baf679b
Upload DurationPredictor.py
Browse files- DurationPredictor.py +139 -0
DurationPredictor.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2019 Tomoki Hayashi
|
2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
3 |
+
# Adapted by Florian Lux 2021
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from Layers.LayerNorm import LayerNorm
|
9 |
+
|
10 |
+
|
11 |
+
class DurationPredictor(torch.nn.Module):
|
12 |
+
"""
|
13 |
+
Duration predictor module.
|
14 |
+
|
15 |
+
This is a module of duration predictor described
|
16 |
+
in `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
17 |
+
The duration predictor predicts a duration of each frame in log domain
|
18 |
+
from the hidden embeddings of encoder.
|
19 |
+
|
20 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
21 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
22 |
+
|
23 |
+
Note:
|
24 |
+
The calculation domain of outputs is different
|
25 |
+
between in `forward` and in `inference`. In `forward`,
|
26 |
+
the outputs are calculated in log domain but in `inference`,
|
27 |
+
those are calculated in linear domain.
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0):
|
32 |
+
"""
|
33 |
+
Initialize duration predictor module.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
idim (int): Input dimension.
|
37 |
+
n_layers (int, optional): Number of convolutional layers.
|
38 |
+
n_chans (int, optional): Number of channels of convolutional layers.
|
39 |
+
kernel_size (int, optional): Kernel size of convolutional layers.
|
40 |
+
dropout_rate (float, optional): Dropout rate.
|
41 |
+
offset (float, optional): Offset value to avoid nan in log domain.
|
42 |
+
|
43 |
+
"""
|
44 |
+
super(DurationPredictor, self).__init__()
|
45 |
+
self.offset = offset
|
46 |
+
self.conv = torch.nn.ModuleList()
|
47 |
+
for idx in range(n_layers):
|
48 |
+
in_chans = idim if idx == 0 else n_chans
|
49 |
+
self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), torch.nn.ReLU(),
|
50 |
+
LayerNorm(n_chans, dim=1), torch.nn.Dropout(dropout_rate), )]
|
51 |
+
self.linear = torch.nn.Linear(n_chans, 1)
|
52 |
+
|
53 |
+
def _forward(self, xs, x_masks=None, is_inference=False):
|
54 |
+
xs = xs.transpose(1, -1) # (B, idim, Tmax)
|
55 |
+
for f in self.conv:
|
56 |
+
xs = f(xs) # (B, C, Tmax)
|
57 |
+
|
58 |
+
# NOTE: calculate in log domain
|
59 |
+
xs = self.linear(xs.transpose(1, -1)).squeeze(-1) # (B, Tmax)
|
60 |
+
|
61 |
+
if is_inference:
|
62 |
+
# NOTE: calculate in linear domain
|
63 |
+
xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value
|
64 |
+
|
65 |
+
if x_masks is not None:
|
66 |
+
xs = xs.masked_fill(x_masks, 0.0)
|
67 |
+
|
68 |
+
return xs
|
69 |
+
|
70 |
+
def forward(self, xs, x_masks=None):
|
71 |
+
"""
|
72 |
+
Calculate forward propagation.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
76 |
+
x_masks (ByteTensor, optional):
|
77 |
+
Batch of masks indicating padded part (B, Tmax).
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Tensor: Batch of predicted durations in log domain (B, Tmax).
|
81 |
+
|
82 |
+
"""
|
83 |
+
return self._forward(xs, x_masks, False)
|
84 |
+
|
85 |
+
def inference(self, xs, x_masks=None):
|
86 |
+
"""
|
87 |
+
Inference duration.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
xs (Tensor): Batch of input sequences (B, Tmax, idim).
|
91 |
+
x_masks (ByteTensor, optional):
|
92 |
+
Batch of masks indicating padded part (B, Tmax).
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
LongTensor: Batch of predicted durations in linear domain (B, Tmax).
|
96 |
+
|
97 |
+
"""
|
98 |
+
return self._forward(xs, x_masks, True)
|
99 |
+
|
100 |
+
|
101 |
+
class DurationPredictorLoss(torch.nn.Module):
|
102 |
+
"""
|
103 |
+
Loss function module for duration predictor.
|
104 |
+
|
105 |
+
The loss value is Calculated in log domain to make it Gaussian.
|
106 |
+
|
107 |
+
"""
|
108 |
+
|
109 |
+
def __init__(self, offset=1.0, reduction="mean"):
|
110 |
+
"""
|
111 |
+
Args:
|
112 |
+
offset (float, optional): Offset value to avoid nan in log domain.
|
113 |
+
reduction (str): Reduction type in loss calculation.
|
114 |
+
|
115 |
+
"""
|
116 |
+
super(DurationPredictorLoss, self).__init__()
|
117 |
+
self.criterion = torch.nn.MSELoss(reduction=reduction)
|
118 |
+
self.offset = offset
|
119 |
+
|
120 |
+
def forward(self, outputs, targets):
|
121 |
+
"""
|
122 |
+
Calculate forward propagation.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
outputs (Tensor): Batch of prediction durations in log domain (B, T)
|
126 |
+
targets (LongTensor): Batch of groundtruth durations in linear domain (B, T)
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
Tensor: Mean squared error loss value.
|
130 |
+
|
131 |
+
Note:
|
132 |
+
`outputs` is in log domain but `targets` is in linear domain.
|
133 |
+
|
134 |
+
"""
|
135 |
+
# NOTE: outputs is in log domain while targets in linear
|
136 |
+
targets = torch.log(targets.float() + self.offset)
|
137 |
+
loss = self.criterion(outputs, targets)
|
138 |
+
|
139 |
+
return loss
|