Spaces:
Running
Running
import os | |
import sys | |
import glob | |
import json | |
import torch | |
import hashlib | |
import logging | |
import argparse | |
import datetime | |
import warnings | |
import logging.handlers | |
import numpy as np | |
import soundfile as sf | |
import matplotlib.pyplot as plt | |
import torch.distributed as dist | |
import torch.utils.data as tdata | |
import torch.multiprocessing as mp | |
from tqdm import tqdm | |
from collections import OrderedDict | |
from random import randint, shuffle | |
from torch.utils.checkpoint import checkpoint | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.utils.tensorboard import SummaryWriter | |
from time import time as ttime | |
from torch.nn import functional as F | |
from distutils.util import strtobool | |
from librosa.filters import mel as librosa_mel_fn | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.nn.utils.parametrizations import spectral_norm, weight_norm | |
sys.path.append(os.getcwd()) | |
from main.configs.config import Config | |
from main.library.algorithm.residuals import LRELU_SLOPE | |
from main.library.algorithm.synthesizers import Synthesizer | |
from main.library.algorithm.commons import get_padding, slice_segments, clip_grad_value | |
MATPLOTLIB_FLAG = False | |
translations = Config().translations | |
warnings.filterwarnings("ignore") | |
logging.getLogger("torch").setLevel(logging.ERROR) | |
class HParams: | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
self[k] = HParams(**v) if isinstance(v, dict) else v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return self.__dict__[key] | |
def __setitem__(self, key, value): | |
self.__dict__[key] = value | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return repr(self.__dict__) | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_name", type=str, required=True) | |
parser.add_argument("--rvc_version", type=str, default="v2") | |
parser.add_argument("--save_every_epoch", type=int, required=True) | |
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--total_epoch", type=int, default=300) | |
parser.add_argument("--sample_rate", type=int, required=True) | |
parser.add_argument("--batch_size", type=int, default=8) | |
parser.add_argument("--gpu", type=str, default="0") | |
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--g_pretrained_path", type=str, default="") | |
parser.add_argument("--d_pretrained_path", type=str, default="") | |
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--overtraining_threshold", type=int, default=50) | |
parser.add_argument("--cleanup", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--model_author", type=str) | |
parser.add_argument("--vocoder", type=str, default="Default") | |
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False) | |
return parser.parse_args() | |
args = parse_arguments() | |
model_name, save_every_epoch, total_epoch, pretrainG, pretrainD, version, gpus, batch_size, sample_rate, pitch_guidance, save_only_latest, save_every_weights, cache_data_in_gpu, overtraining_detector, overtraining_threshold, cleanup, model_author, vocoder, checkpointing = args.model_name, args.save_every_epoch, args.total_epoch, args.g_pretrained_path, args.d_pretrained_path, args.rvc_version, args.gpu, args.batch_size, args.sample_rate, args.pitch_guidance, args.save_only_latest, args.save_every_weights, args.cache_data_in_gpu, args.overtraining_detector, args.overtraining_threshold, args.cleanup, args.model_author, args.vocoder, args.checkpointing | |
experiment_dir = os.path.join("assets", "logs", model_name) | |
training_file_path = os.path.join(experiment_dir, "training_data.json") | |
config_save_path = os.path.join(experiment_dir, "config.json") | |
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",") | |
n_gpus = len(gpus.split("-")) | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.benchmark = False | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
global_step, last_loss_gen_all, overtrain_save_epoch = 0, 0, 0 | |
loss_gen_history, smoothed_loss_gen_history, loss_disc_history, smoothed_loss_disc_history = [], [], [], [] | |
with open(config_save_path, "r") as f: | |
config = json.load(f) | |
config = HParams(**config) | |
config.data.training_files = os.path.join(experiment_dir, "filelist.txt") | |
logger = logging.getLogger(__name__) | |
if logger.hasHandlers(): logger.handlers.clear() | |
else: | |
console_handler = logging.StreamHandler() | |
console_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) | |
console_handler.setLevel(logging.INFO) | |
file_handler = logging.handlers.RotatingFileHandler(os.path.join(experiment_dir, "train.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8') | |
file_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) | |
file_handler.setLevel(logging.DEBUG) | |
logger.addHandler(console_handler) | |
logger.addHandler(file_handler) | |
logger.setLevel(logging.DEBUG) | |
log_data = {translations['modelname']: model_name, translations["save_every_epoch"]: save_every_epoch, translations["total_e"]: total_epoch, translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD): "", translations['training_version']: version, "Gpu": gpus, translations['batch_size']: batch_size, translations['pretrain_sr']: sample_rate, translations['training_f0']: pitch_guidance, translations['save_only_latest']: save_only_latest, translations['save_every_weights']: save_every_weights, translations['cache_in_gpu']: cache_data_in_gpu, translations['overtraining_detector']: overtraining_detector, translations['threshold']: overtraining_threshold, translations['cleanup_training']: cleanup, translations['memory_efficient_training']: checkpointing} | |
if model_author: log_data[translations["model_author"].format(model_author=model_author)] = "" | |
if vocoder != "Default": log_data[translations['vocoder']] = vocoder | |
for key, value in log_data.items(): | |
logger.debug(f"{key}: {value}" if value != "" else f"{key} {value}") | |
def main(): | |
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author, vocoder, checkpointing | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) | |
if torch.cuda.is_available(): device, n_gpus = torch.device("cuda"), torch.cuda.device_count() | |
elif torch.backends.mps.is_available(): device, n_gpus = torch.device("mps"), 1 | |
else: device, n_gpus = torch.device("cpu"), 1 | |
def start(): | |
children = [] | |
pid_data = {"process_pids": []} | |
with open(config_save_path, "r") as pid_file: | |
try: | |
pid_data.update(json.load(pid_file)) | |
except json.JSONDecodeError: | |
pass | |
with open(config_save_path, "w") as pid_file: | |
for i in range(n_gpus): | |
subproc = mp.Process(target=run, args=(i, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, total_epoch, save_every_weights, config, device, model_author, vocoder, checkpointing)) | |
children.append(subproc) | |
subproc.start() | |
pid_data["process_pids"].append(subproc.pid) | |
json.dump(pid_data, pid_file, indent=4) | |
for i in range(n_gpus): | |
children[i].join() | |
def load_from_json(file_path): | |
if os.path.exists(file_path): | |
with open(file_path, "r") as f: | |
data = json.load(f) | |
return (data.get("loss_disc_history", []), data.get("smoothed_loss_disc_history", []), data.get("loss_gen_history", []), data.get("smoothed_loss_gen_history", [])) | |
return [], [], [], [] | |
def continue_overtrain_detector(training_file_path): | |
if overtraining_detector and os.path.exists(training_file_path): (loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) = load_from_json(training_file_path) | |
n_gpus = torch.cuda.device_count() | |
if not torch.cuda.is_available() and torch.backends.mps.is_available(): n_gpus = 1 | |
if n_gpus < 1: | |
logger.warning(translations["not_gpu"]) | |
n_gpus = 1 | |
if cleanup: | |
for root, dirs, files in os.walk(experiment_dir, topdown=False): | |
for name in files: | |
file_path = os.path.join(root, name) | |
_, file_extension = os.path.splitext(name) | |
if (file_extension == ".0" or (name.startswith("D_") and file_extension == ".pth") or (name.startswith("G_") and file_extension == ".pth") or (file_extension == ".index")): os.remove(file_path) | |
for name in dirs: | |
if name == "eval": | |
folder_path = os.path.join(root, name) | |
for item in os.listdir(folder_path): | |
item_path = os.path.join(folder_path, item) | |
if os.path.isfile(item_path): os.remove(item_path) | |
os.rmdir(folder_path) | |
continue_overtrain_detector(training_file_path) | |
start() | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
plt.switch_backend("Agg") | |
MATPLOTLIB_FLAG = True | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
plt.colorbar(ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none"), ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
plt.close(fig) | |
return np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
def verify_checkpoint_shapes(checkpoint_path, model): | |
checkpoint = torch.load(checkpoint_path, map_location="cpu") | |
checkpoint_state_dict = checkpoint["model"] | |
try: | |
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) if hasattr(model, "module") else model.load_state_dict(checkpoint_state_dict) | |
except RuntimeError: | |
logger.warning(translations["checkpointing_err"]) | |
sys.exit(1) | |
else: del checkpoint, checkpoint_state_dict, model_state_dict | |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sample_rate=22050): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sample_rate) | |
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
assert os.path.isfile(checkpoint_path), translations["not_found_checkpoint"].format(checkpoint_path=checkpoint_path) | |
checkpoint_dict = replace_keys_in_dict(replace_keys_in_dict(torch.load(checkpoint_path, map_location="cpu"), ".weight_v", ".parametrizations.weight.original1"), ".weight_g", ".parametrizations.weight.original0") | |
new_state_dict = {k: checkpoint_dict["model"].get(k, v) for k, v in (model.module.state_dict() if hasattr(model, "module") else model.state_dict()).items()} | |
if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False) | |
else: model.load_state_dict(new_state_dict, strict=False) | |
if optimizer and load_opt == 1: optimizer.load_state_dict(checkpoint_dict.get("optimizer", {})) | |
logger.debug(translations["save_checkpoint"].format(checkpoint_path=checkpoint_path, checkpoint_dict=checkpoint_dict['iteration'])) | |
return (model, optimizer, checkpoint_dict.get("learning_rate", 0), checkpoint_dict["iteration"]) | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict()) | |
torch.save(replace_keys_in_dict(replace_keys_in_dict({"model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate}, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), checkpoint_path) | |
logger.info(translations["save_model"].format(checkpoint_path=checkpoint_path, iteration=iteration)) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
checkpoints = sorted(glob.glob(os.path.join(dir_path, regex)), key=lambda f: int("".join(filter(str.isdigit, f)))) | |
return checkpoints[-1] if checkpoints else None | |
def load_wav_to_torch(full_path): | |
data, sample_rate = sf.read(full_path, dtype='float32') | |
return torch.FloatTensor(data.astype(np.float32)), sample_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding="utf-8") as f: | |
return [line.strip().split(split) for line in f] | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl.float().detach() - gl.float())) | |
return loss * 2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses, g_losses = [], [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
dr = dr.float() | |
dg = dg.float() | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg**2) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
l = torch.mean((1 - dg.float()) ** 2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) | |
return torch.sum(kl * z_mask) / torch.sum(z_mask) | |
class TextAudioLoaderMultiNSFsid(tdata.Dataset): | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
audiopaths_and_text_new, lengths = [], [] | |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as e: | |
logger.error(translations["sid_error"].format(sid=sid, e=e)) | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
phone, pitch, pitchf = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3]) | |
spec, wav = self.get_audio(audiopath_and_text[0]) | |
dv = self.get_sid(audiopath_and_text[4]) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec, wav, phone = spec[:, :len_min], wav[:, :len_wav], phone[:len_min, :] | |
pitch, pitchf = pitch[:len_min], pitchf[:len_min] | |
return (spec, wav, phone, pitch, pitchf, dv) | |
def get_labels(self, phone, pitch, pitchf): | |
phone = np.repeat(np.load(phone), 2, axis=0) | |
n_num = min(phone.shape[0], 900) | |
return torch.FloatTensor(phone[:n_num, :]), torch.LongTensor(np.load(pitch)[:n_num]), torch.FloatTensor(np.load(pitchf)[:n_num]) | |
def get_audio(self, filename): | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) | |
audio_norm = audio.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as e: | |
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) | |
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollateMultiNSFsid: | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) | |
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch)) | |
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch])) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) | |
pitch_padded, pitchf_padded = torch.LongTensor(len(batch), max_phone_len), torch.FloatTensor(len(batch), max_phone_len) | |
phone_padded.zero_() | |
pitch_padded.zero_() | |
pitchf_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
pitch = row[3] | |
pitch_padded[i, : pitch.size(0)] = pitch | |
pitchf = row[4] | |
pitchf_padded[i, : pitchf.size(0)] = pitchf | |
sid[i] = row[5] | |
return (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid) | |
class TextAudioLoader(tdata.Dataset): | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
audiopaths_and_text_new, lengths = [], [] | |
for entry in self.audiopaths_and_text: | |
if len(entry) >= 3: | |
audiopath, text, dv = entry[:3] | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as e: | |
logger.error(translations["sid_error"].format(sid=sid, e=e)) | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
phone = self.get_labels(audiopath_and_text[1]) | |
spec, wav = self.get_audio(audiopath_and_text[0]) | |
dv = self.get_sid(audiopath_and_text[2]) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
return (spec, wav, phone, dv) | |
def get_labels(self, phone): | |
phone = np.repeat(np.load(phone), 2, axis=0) | |
return torch.FloatTensor(phone[:min(phone.shape[0], 900), :]) | |
def get_audio(self, filename): | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) | |
audio_norm = audio.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as e: | |
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) | |
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollate: | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) | |
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch)) | |
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch])) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) | |
phone_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
sid[i] = row[3] | |
return (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid) | |
class DistributedBucketSampler(tdata.distributed.DistributedSampler): | |
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
idx_bucket = self._bisect(self.lengths[i]) | |
if idx_bucket != -1: buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, -1, -1): | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
num_samples_per_bucket.append(len_bucket + ((total_batch_size - (len_bucket % total_batch_size)) % total_batch_size)) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices, batches = [], [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
ids_bucket = indices[i] | |
rem = self.num_samples_per_bucket[i] - len_bucket | |
ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)])[self.rank :: self.num_replicas] | |
for j in range(len(ids_bucket) // self.batch_size): | |
batches.append([bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]]) | |
if self.shuffle: batches = [batches[i] for i in torch.randperm(len(batches), generator=g).tolist()] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid | |
elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) | |
else: return self._bisect(x, mid + 1, hi) | |
else: return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, version, use_spectral_norm=False, checkpointing=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.checkpointing = checkpointing | |
periods = ([2, 3, 5, 7, 11, 17] if version == "v1" else [2, 3, 5, 7, 11, 17, 23, 37]) | |
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm, checkpointing=checkpointing)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing) for p in periods]) | |
def forward(self, y, y_hat): | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
for d in self.discriminators: | |
if self.training and self.checkpointing: | |
def forward_discriminator(d, y, y_hat): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
return y_d_r, fmap_r, y_d_g, fmap_g | |
y_d_r, fmap_r, y_d_g, fmap_g = checkpoint(forward_discriminator, d, y, y_hat, use_reentrant=False) | |
else: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r); fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g); fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False, checkpointing=False): | |
super(DiscriminatorS, self).__init__() | |
self.checkpointing = checkpointing | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2))]) | |
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
fmap = [] | |
for conv in self.convs: | |
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return torch.flatten(x, 1, -1), fmap | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, checkpointing=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.checkpointing = checkpointing | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv2d(in_ch, out_ch, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))) for in_ch, out_ch in zip([1, 32, 128, 512, 1024], [32, 128, 512, 1024, 1024])]) | |
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
fmap = [] | |
b, c, t = x.shape | |
if t % self.period != 0: x = torch.nn.functional.pad(x, (0, (self.period - (t % self.period))), "reflect") | |
x = x.view(b, c, -1, self.period) | |
for conv in self.convs: | |
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return torch.flatten(x, 1, -1), fmap | |
class EpochRecorder: | |
def __init__(self): | |
self.last_time = ttime() | |
def record(self): | |
now_time = ttime() | |
elapsed_time = now_time - self.last_time | |
self.last_time = now_time | |
return translations["time_or_speed_training"].format(current_time=datetime.datetime.now().strftime("%H:%M:%S"), elapsed_time_str=str(datetime.timedelta(seconds=int(round(elapsed_time, 1))))) | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
return dynamic_range_compression_torch(magnitudes) | |
def spectral_de_normalize_torch(magnitudes): | |
return dynamic_range_decompression_torch(magnitudes) | |
mel_basis, hann_window = {}, {} | |
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): | |
global hann_window | |
wnsize_dtype_device = str(win_size) + "_" + str(y.dtype) + "_" + str(y.device) | |
if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | |
spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect").squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True) | |
return torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) | |
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): | |
global mel_basis | |
fmax_dtype_device = str(fmax) + "_" + str(spec.dtype) + "_" + str(spec.device) | |
if fmax_dtype_device not in mel_basis: mel_basis[fmax_dtype_device] = torch.from_numpy(librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)).to(dtype=spec.dtype, device=spec.device) | |
return spectral_normalize_torch(torch.matmul(mel_basis[fmax_dtype_device], spec)) | |
def mel_spectrogram_torch(y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False): | |
return spec_to_mel_torch(spectrogram_torch(y, n_fft, hop_size, win_size, center), n_fft, num_mels, sample_rate, fmin, fmax) | |
def replace_keys_in_dict(d, old_key_part, new_key_part): | |
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {} | |
for key, value in d.items(): | |
updated_dict[(key.replace(old_key_part, new_key_part) if isinstance(key, str) else key)] = (replace_keys_in_dict(value, old_key_part, new_key_part) if isinstance(value, dict) else value) | |
return updated_dict | |
def extract_model(ckpt, sr, pitch_guidance, name, model_path, epoch, step, version, hps, model_author, vocoder): | |
try: | |
logger.info(translations["savemodel"].format(model_dir=model_path, epoch=epoch, step=step)) | |
os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key}) | |
opt["config"] = [hps.data.filter_length // 2 + 1, 32, hps.model.inter_channels, hps.model.hidden_channels, hps.model.filter_channels, hps.model.n_heads, hps.model.n_layers, hps.model.kernel_size, hps.model.p_dropout, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, hps.model.spk_embed_dim, hps.model.gin_channels, hps.data.sample_rate] | |
opt["epoch"] = f"{epoch}epoch" | |
opt["step"] = step | |
opt["sr"] = sr | |
opt["f0"] = int(pitch_guidance) | |
opt["version"] = version | |
opt["creation_date"] = datetime.datetime.now().isoformat() | |
opt["model_hash"] = hashlib.sha256(f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}".encode()).hexdigest() | |
opt["model_name"] = name | |
opt["author"] = model_author | |
opt["vocoder"] = vocoder | |
torch.save(replace_keys_in_dict(replace_keys_in_dict(opt, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), model_path) | |
except Exception as e: | |
logger.error(f"{translations['extract_model_error']}: {e}") | |
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author, vocoder, checkpointing): | |
global global_step | |
if rank == 0: writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) | |
else: writer_eval = None | |
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank) | |
torch.manual_seed(config.train.seed) | |
if torch.cuda.is_available(): torch.cuda.set_device(rank) | |
train_dataset = TextAudioLoaderMultiNSFsid(config.data) | |
train_loader = tdata.DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=TextAudioCollateMultiNSFsid(), batch_sampler=DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True), persistent_workers=True, prefetch_factor=8) | |
net_g, net_d = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance, sr=sample_rate, vocoder=vocoder, checkpointing=checkpointing), MultiPeriodDiscriminator(version, config.model.use_spectral_norm, checkpointing=checkpointing) | |
net_g, net_d = (net_g.cuda(rank), net_d.cuda(rank)) if torch.cuda.is_available() else (net_g.to(device), net_d.to(device)) | |
optim_g, optim_d = torch.optim.AdamW(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps), torch.optim.AdamW(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps) | |
net_g, net_d = (DDP(net_g, device_ids=[rank]), DDP(net_d, device_ids=[rank])) if torch.cuda.is_available() else (DDP(net_g), DDP(net_d)) | |
try: | |
logger.info(translations["start_training"]) | |
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "D_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "D_*.pth")), net_d, optim_d) | |
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "G_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "G_*.pth")), net_g, optim_g) | |
epoch_str += 1 | |
global_step = (epoch_str - 1) * len(train_loader) | |
except: | |
epoch_str, global_step = 1, 0 | |
if pretrainG != "" and pretrainG != "None": | |
if rank == 0: | |
verify_checkpoint_shapes(pretrainG, net_g) | |
logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG)) | |
if hasattr(net_g, "module"): net_g.module.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) | |
else: net_g.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) | |
else: logger.warning(translations["not_using_pretrain"].format(dg="G")) | |
if pretrainD != "" and pretrainD != "None": | |
if rank == 0: | |
verify_checkpoint_shapes(pretrainD, net_d) | |
logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD)) | |
if hasattr(net_d, "module"): net_d.module.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) | |
else: net_d.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) | |
else: logger.warning(translations["not_using_pretrain"].format(dg="D")) | |
scheduler_g, scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2), torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2) | |
optim_d.step(); optim_g.step() | |
scaler = GradScaler(enabled=False) | |
cache = [] | |
for info in train_loader: | |
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info | |
reference = (phone.cuda(rank, non_blocking=True), phone_lengths.cuda(rank, non_blocking=True), (pitch.cuda(rank, non_blocking=True) if pitch_guidance else None), (pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None), sid.cuda(rank, non_blocking=True)) if device.type == "cuda" else (phone.to(device), phone_lengths.to(device), (pitch.to(device) if pitch_guidance else None), (pitchf.to(device) if pitch_guidance else None), sid.to(device)) | |
break | |
for epoch in range(epoch_str, total_epoch + 1): | |
train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, train_loader, writer_eval, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder) | |
scheduler_g.step(); scheduler_d.step() | |
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, train_loader, writer, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder): | |
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc | |
if epoch == 1: | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
last_loss_gen_all, consecutive_increases_gen, consecutive_increases_disc = 0.0, 0, 0 | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
train_loader.batch_sampler.set_epoch(epoch) | |
net_g.train(); net_d.train() | |
if device.type == "cuda" and cache_data_in_gpu: | |
data_iterator = cache | |
if cache == []: | |
for batch_idx, info in enumerate(train_loader): | |
cache.append((batch_idx, [tensor.cuda(rank, non_blocking=True) for tensor in info])) | |
else: shuffle(cache) | |
else: data_iterator = enumerate(train_loader) | |
epoch_recorder = EpochRecorder() | |
with tqdm(total=len(train_loader), leave=False) as pbar: | |
for batch_idx, info in data_iterator: | |
if device.type == "cuda" and not cache_data_in_gpu: info = [tensor.cuda(rank, non_blocking=True) for tensor in info] | |
elif device.type != "cuda": info = [tensor.to(device) for tensor in info] | |
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, _, sid = info | |
pitch = pitch if pitch_guidance else None | |
pitchf = pitchf if pitch_guidance else None | |
with autocast(enabled=False): | |
y_hat, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid) | |
mel = spec_to_mel_torch(spec, config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.mel_fmin, config.data.mel_fmax) | |
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3) | |
with autocast(enabled=False): | |
y_hat_mel = mel_spectrogram_torch(y_hat.float().squeeze(1), config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.hop_length, config.data.win_length, config.data.mel_fmin, config.data.mel_fmax) | |
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3) | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) | |
with autocast(enabled=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) | |
optim_d.zero_grad() | |
scaler.scale(loss_disc).backward() | |
scaler.unscale_(optim_d) | |
grad_norm_d = clip_grad_value(net_d.parameters(), None) | |
scaler.step(optim_d) | |
with autocast(enabled=False): | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) | |
with autocast(enabled=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel | |
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl) | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl | |
if loss_gen_all < lowest_value["value"]: | |
lowest_value["value"] = loss_gen_all | |
lowest_value["step"] = global_step | |
lowest_value["epoch"] = epoch | |
if epoch > lowest_value["epoch"]: logger.warning(translations["training_warning"]) | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
grad_norm_g = clip_grad_value(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
if rank == 0 and global_step % config.train.log_interval == 0: | |
if loss_mel > 75: loss_mel = 75 | |
if loss_kl > 9: loss_kl = 9 | |
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc, "learning_rate": optim_g.param_groups[0]["lr"], "grad/norm_d": grad_norm_d, "grad/norm_g": grad_norm_g, "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl} | |
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)}) | |
scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)}) | |
scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)}) | |
with torch.no_grad(): | |
o, *_ = net_g.module.infer(*reference) if hasattr(net_g, "module") else net_g.infer(*reference) | |
summarize(writer=writer, global_step=global_step, images={"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())}, scalars=scalar_dict, audios={f"gen/audio_{global_step:07d}": o[0, :, :]}, audio_sample_rate=config.data.sample_rate) | |
global_step += 1 | |
pbar.update(1) | |
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004): | |
if len(smoothed_loss_history) < threshold + 1: return False | |
for i in range(-threshold, -1): | |
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True | |
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False | |
return True | |
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987): | |
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value) | |
smoothed_loss_history.append(smoothed_value) | |
return smoothed_value | |
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history): | |
with open(file_path, "w") as f: | |
json.dump({"loss_disc_history": loss_disc_history, "smoothed_loss_disc_history": smoothed_loss_disc_history, "loss_gen_history": loss_gen_history, "smoothed_loss_gen_history": smoothed_loss_gen_history}, f) | |
model_add, model_del = [], [] | |
done = False | |
if rank == 0: | |
if epoch % save_every_epoch == False: | |
checkpoint_suffix = f"{'latest' if save_only_latest else global_step}.pth" | |
save_checkpoint(net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix)) | |
save_checkpoint(net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix)) | |
if custom_save_every_weights: model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) | |
if overtraining_detector and epoch > 1: | |
current_loss_disc = float(loss_disc) | |
loss_disc_history.append(current_loss_disc) | |
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc) | |
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2) | |
if is_overtraining_disc: consecutive_increases_disc += 1 | |
else: consecutive_increases_disc = 0 | |
current_loss_gen = float(lowest_value["value"]) | |
loss_gen_history.append(current_loss_gen) | |
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen) | |
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01) | |
if is_overtraining_gen: consecutive_increases_gen += 1 | |
else: consecutive_increases_gen = 0 | |
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) | |
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)): | |
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
done = True | |
else: | |
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
for file in glob.glob(os.path.join("assets", "weights", f"{model_name}_*e_*s_best_epoch.pth")): | |
model_del.append(file) | |
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth")) | |
if epoch >= custom_total_epoch: | |
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3))) | |
logger.info(translations["training_info"].format(lowest_value_rounded=round(float(lowest_value["value"]), 3), lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) | |
pid_file_path = os.path.join(experiment_dir, "config.json") | |
with open(pid_file_path, "r") as pid_file: | |
pid_data = json.load(pid_file) | |
with open(pid_file_path, "w") as pid_file: | |
pid_data.pop("process_pids", None) | |
json.dump(pid_data, pid_file, indent=4) | |
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) | |
done = True | |
for m in model_del: | |
os.remove(m) | |
if model_add: | |
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()) | |
for m in model_add: | |
extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_path=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author, vocoder=vocoder) | |
lowest_value_rounded = round(float(lowest_value["value"]), 3) | |
if epoch > 1 and overtraining_detector: logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=(overtraining_threshold - consecutive_increases_gen), remaining_epochs_disc=((overtraining_threshold * 2) - consecutive_increases_disc), smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) | |
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record())) | |
last_loss_gen_all = loss_gen_all | |
if done: os._exit(0) | |
if __name__ == "__main__": | |
torch.multiprocessing.set_start_method("spawn") | |
try: | |
main() | |
except Exception as e: | |
logger.error(f"{translations['training_error']} {e}") | |
import traceback | |
logger.debug(traceback.format_exc()) |