That1BrainCell commited on
Commit
c980209
·
verified ·
1 Parent(s): a33fddf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -11
app.py CHANGED
@@ -55,6 +55,7 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
55
  search_functions = {
56
  'google': search_google,
57
  'duckduckgo': search_duckduckgo,
 
58
  'github': search_github,
59
  'wikipedia': search_wikipedia
60
  }
@@ -94,6 +95,12 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
94
  logger.write(str(data) + "\n")
95
  log_area.text(logger.getvalue())
96
 
 
 
 
 
 
 
97
  logger.write("\n\nCreating Main product Embeddings ---------->\n")
98
  main_result, main_embedding = get_embeddings(main_url,tag_option)
99
  log_area.text(logger.getvalue())
@@ -107,23 +114,32 @@ def score(main_product, main_url, product_count, link_count, search, logger, log
107
 
108
 
109
  for product in data:
110
- for link in data[product][:link_count]:
111
 
112
- similar_result, similar_embedding = get_embeddings(link,tag_option)
 
113
  log_area.text(logger.getvalue())
 
 
 
 
 
114
 
115
- print(similar_embedding)
116
- for i in range(len(main_embedding)):
117
- score = cosine_similarity(main_embedding[i], similar_embedding[i])
118
- cosine_sim_scores.append((product, link, i, score))
119
  log_area.text(logger.getvalue())
120
 
 
 
 
 
 
 
121
  logger.write("--------------- DONE -----------------\n")
122
  log_area.text(logger.getvalue())
123
  return cosine_sim_scores, main_result
124
 
125
  # Streamlit Interface
126
- st.title("Product Infringement Checker")
 
127
 
128
  # Inputs
129
  main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
@@ -151,12 +167,14 @@ if st.button('Check for Infringement'):
151
 
152
  st.subheader("Cosine Similarity Scores")
153
 
154
- if tag_option=="Single":
155
- tags=["Details"]
156
- else:
 
157
  tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
158
 
159
  for product, link, index, value in cosine_sim_scores:
160
  if not index:
161
  st.write(f"Product: {product}, Link: {link}")
162
- st.write(f"{tags[index]:<20} - Similarity: {value:.2f}")
 
 
55
  search_functions = {
56
  'google': search_google,
57
  'duckduckgo': search_duckduckgo,
58
+ 'archive': search_archive,
59
  'github': search_github,
60
  'wikipedia': search_wikipedia
61
  }
 
95
  logger.write(str(data) + "\n")
96
  log_area.text(logger.getvalue())
97
 
98
+ if len(data[product]) == 0:
99
+ logger.write("\n\nNo Product links Found Increase No of Links or Change Search Source\n")
100
+ log_area.text(logger.getvalue())
101
+
102
+ return [[product,'No Product links Found Increase Number of Links or Change Search Source',0,0]], False
103
+
104
  logger.write("\n\nCreating Main product Embeddings ---------->\n")
105
  main_result, main_embedding = get_embeddings(main_url,tag_option)
106
  log_area.text(logger.getvalue())
 
114
 
115
 
116
  for product in data:
 
117
 
118
+ if len(data[product])==0:
119
+ logger.write("\n\nNo Product links Found Increase No of Links or Change Search Source\n")
120
  log_area.text(logger.getvalue())
121
+
122
+ cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',0,0))
123
+
124
+ else:
125
+ for link in data[product][:link_count]:
126
 
127
+ similar_result, similar_embedding = get_embeddings(link,tag_option)
 
 
 
128
  log_area.text(logger.getvalue())
129
 
130
+ print(similar_embedding)
131
+ for i in range(len(main_embedding)):
132
+ score = cosine_similarity(main_embedding[i], similar_embedding[i])
133
+ cosine_sim_scores.append((product, link, i, score))
134
+ log_area.text(logger.getvalue())
135
+
136
  logger.write("--------------- DONE -----------------\n")
137
  log_area.text(logger.getvalue())
138
  return cosine_sim_scores, main_result
139
 
140
  # Streamlit Interface
141
+ st.title("Check Infringement")
142
+
143
 
144
  # Inputs
145
  main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
 
167
 
168
  st.subheader("Cosine Similarity Scores")
169
 
170
+ # = score(main_product, main_url, search, logger, log_output)
171
+ if tag_option == 'Single':
172
+ tags = ['Details']
173
+ else:
174
  tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
175
 
176
  for product, link, index, value in cosine_sim_scores:
177
  if not index:
178
  st.write(f"Product: {product}, Link: {link}")
179
+ if index!=0 and value!=0:
180
+ st.write(f"{tags[index]:<20} - Similarity: {value:.2f}")