|
import time |
|
from collections import deque |
|
from contextlib import nullcontext |
|
from typing import Any, Callable, Deque, Dict, Optional |
|
|
|
import torch |
|
from lightning import Callback, Fabric, LightningModule, Trainer |
|
from lightning.fabric.accelerators.xla import _XLA_GREATER_EQUAL_2_1 |
|
from lightning.fabric.plugins import ( |
|
BitsandbytesPrecision, |
|
DoublePrecision, |
|
FSDPPrecision, |
|
HalfPrecision, |
|
MixedPrecision, |
|
Precision, |
|
TransformerEnginePrecision, |
|
XLAPrecision, |
|
) |
|
from lightning.fabric.utilities.rank_zero import rank_zero_only as fabric_rank_zero_only |
|
from lightning.pytorch.plugins import ( |
|
DoublePrecisionPlugin, |
|
FSDPPrecisionPlugin, |
|
HalfPrecisionPlugin, |
|
MixedPrecisionPlugin, |
|
XLAPrecisionPlugin, |
|
) |
|
from lightning.pytorch.utilities.rank_zero import rank_zero_only as trainer_rank_zero_only |
|
from torch.utils.flop_counter import FlopCounterMode |
|
|
|
from tsai_gpt import GPT |
|
from tsai_gpt.utils import num_parameters |
|
|
|
GPU_AVAILABLE_FLOPS = { |
|
|
|
|
|
"h100-sxm": { |
|
torch.float64: 67e12, |
|
torch.float32: 67e12, |
|
torch.bfloat16: 1.979e15 / 2, |
|
torch.float16: 1.979e15 / 2, |
|
torch.int8: 3.958e15 / 2, |
|
}, |
|
"h100-pcie": { |
|
torch.float64: 51e12, |
|
torch.float32: 51e12, |
|
torch.bfloat16: 1.513e15 / 2, |
|
torch.float16: 1.513e15 / 2, |
|
torch.int8: 3.026e15 / 2, |
|
}, |
|
|
|
|
|
"a100": {torch.float64: 19.5e12, torch.float32: 19.5e12, torch.bfloat16: 312e12, torch.float16: 312e12}, |
|
|
|
"a10g": {torch.float32: 31.2e12, torch.bfloat16: 125e12, torch.float16: 125e12}, |
|
|
|
"v100-sxm": {torch.float64: 7.8e12, torch.float32: 15.7e12, torch.float16: 125e12}, |
|
"v100-pcie": {torch.float64: 7e12, torch.float32: 14e12, torch.float16: 112e12}, |
|
"v100s-pcie": {torch.float64: 8.2e12, torch.float32: 16.4e12, torch.float16: 130e12}, |
|
|
|
|
|
"t4": {torch.float32: 8.1e12, torch.float16: 65e12, torch.int8: 130e12}, |
|
|
|
"quadro rtx 5000": {torch.float32: 11.2e12, torch.float16: 89.2e12}, |
|
} |
|
|
|
TPU_AVAILABLE_FLOPS = { |
|
|
|
|
|
|
|
|
|
"v2": 45e12, |
|
|
|
"v3": 123e12, |
|
|
|
"v4": 275e12, |
|
|
|
"v5litepod": 197e12, |
|
} |
|
|
|
|
|
def get_flops_available(device: torch.device, dtype: torch.dtype) -> Optional[float]: |
|
if device.type == "cuda": |
|
device_name = torch.cuda.get_device_name(device).lower() |
|
if "h100" in device_name and "hbm3" in device_name: |
|
device_name = "h100-sxm" |
|
elif "h100" in device_name and ("pcie" in device_name or "hbm2e" in device_name): |
|
device_name = "h100-pcie" |
|
elif "a100" in device_name: |
|
device_name = "a100" |
|
elif "a10g" in device_name: |
|
device_name = "a10g" |
|
elif "v100-sxm" in device_name: |
|
device_name = "v100-sxm" |
|
elif "v100-pcie" in device_name: |
|
device_name = "v100-pcie" |
|
elif "t4" in device_name: |
|
device_name = "t4" |
|
elif "quadro rtx 5000" in device_name: |
|
device_name = "quadro rtx 5000" |
|
else: |
|
device_name = None |
|
|
|
if device_name is not None: |
|
try: |
|
return int(GPU_AVAILABLE_FLOPS[device_name][dtype]) |
|
except KeyError: |
|
raise KeyError( |
|
f"flop count not found for {device_name} with dtype: {dtype}; " |
|
"MFU cannot be calculated and reported." |
|
) |
|
elif device.type == "xla": |
|
if _XLA_GREATER_EQUAL_2_1: |
|
from torch_xla._internal import tpu |
|
else: |
|
from torch_xla.experimental import tpu |
|
|
|
device_name = tpu.get_tpu_env()["TYPE"].lower() |
|
try: |
|
return int(TPU_AVAILABLE_FLOPS[device_name]) |
|
except KeyError: |
|
raise KeyError( |
|
f"flop count not found for {device_name} with dtype: {dtype}; MFU cannot be calculated and reported." |
|
) |
|
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
class SpeedMonitorBase: |
|
"""Logs the training throughput and utilization. |
|
|
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| Key | Logged data | |
|
+=====================================+===========================================================+ |
|
| | Rolling average (over `window_size` most recent | |
|
| `throughput/batches_per_sec` | batches) of the number of batches processed per second | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | Rolling average (over `window_size` most recent | |
|
| `throughput/samples_per_sec` | batches) of the number of samples processed per second | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | Rolling average (over `window_size` most recent | |
|
| `throughput/tokens_per_sec` | batches) of the number of tokens processed per second. | |
|
| | This may include padding depending on dataset | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | Estimates flops by `flops_per_batch * batches_per_sec` | |
|
| `throughput/flops_per_sec` | | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| `throughput/device/batches_per_sec` | `throughput/batches_per_sec` divided by world size | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| `throughput/device/samples_per_sec` | `throughput/samples_per_sec` divided by world size | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | `throughput/tokens_per_sec` divided by world size. This | |
|
| `throughput/device/tokens_per_sec` | may include pad tokens depending on dataset | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | `throughput/flops_per_sec` divided by world size. Only | |
|
| `throughput/device/flops_per_sec` | logged when model has attribute `flops_per_batch` | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| | `throughput/device/flops_per_sec` divided by world size. | |
|
| `throughput/device/mfu` | | |
|
| | | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| `time/train` | Total elapsed training time | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| `time/val` | Total elapsed validation time | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
| `time/total` | Total elapsed time (time/train + time/val) | |
|
+-------------------------------------+-----------------------------------------------------------+ |
|
|
|
Notes: |
|
- The implementation assumes that devices are homogeneous as it normalizes by the world size. |
|
- Tokens/sec, flops/sec and MFU do not account for padding tokens if present. We suggest using samples/sec or |
|
batches/sec to measure throughput under this circumstance. |
|
- Be careful when comparing MFU numbers across projects, as this will highly depend on the ``flops_per_batch``. |
|
There is no widespread, realistic, and reliable implementation to compute them. |
|
We suggest using our ``measure_flops`` function, but many other works will use ``estimated_flops`` which |
|
will almost always be an overestimate when compared to the true value. |
|
|
|
Args: |
|
window_size (int, optional): Number of batches to use for a rolling average of throughput. |
|
Defaults to 100. |
|
time_unit (str, optional): Time unit to use for `time` logging. Can be one of |
|
'seconds', 'minutes', 'hours', or 'days'. Defaults to 'hours'. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
flops_available: float, |
|
log_dict: Callable[[Dict, int], None], |
|
window_size: int = 100, |
|
time_unit: str = "hours", |
|
): |
|
self.flops_available = flops_available |
|
self.log_dict = log_dict |
|
|
|
|
|
self.history_samples: Deque[int] = deque(maxlen=window_size + 1) |
|
self.history_wct: Deque[float] = deque(maxlen=window_size + 1) |
|
self.history_lengths: Deque[int] = deque(maxlen=window_size + 1) |
|
self.history_flops: Deque[int] = deque(maxlen=window_size + 1) |
|
|
|
self.divider = 1 |
|
if time_unit == "seconds": |
|
self.divider = 1 |
|
elif time_unit == "minutes": |
|
self.divider = 60 |
|
elif time_unit == "hours": |
|
self.divider = 60 * 60 |
|
elif time_unit == "days": |
|
self.divider = 60 * 60 * 24 |
|
else: |
|
raise ValueError( |
|
f'Invalid time_unit: {time_unit}. Must be one of "seconds", "minutes", "hours", or "days".' |
|
) |
|
|
|
|
|
self.total_eval_wct = 0.0 |
|
self.step = -1 |
|
|
|
def on_train_batch_end( |
|
self, |
|
samples: int, |
|
train_elapsed: float, |
|
world_size: int, |
|
flops_per_batch: Optional[int] = None, |
|
lengths: Optional[int] = None, |
|
) -> None: |
|
self.step += 1 |
|
step = self.step |
|
metrics = {} |
|
|
|
self.history_samples.append(samples) |
|
if lengths is not None: |
|
self.history_lengths.append(lengths) |
|
|
|
assert len(self.history_samples) == len(self.history_lengths) |
|
self.history_wct.append(train_elapsed) |
|
if len(self.history_wct) == self.history_wct.maxlen: |
|
elapsed_batches = len(self.history_samples) - 1 |
|
elapsed_samples = self.history_samples[-1] - self.history_samples[0] |
|
elapsed_wct = self.history_wct[-1] - self.history_wct[0] |
|
samples_per_sec = elapsed_samples * world_size / elapsed_wct |
|
dev_samples_per_sec = elapsed_samples / elapsed_wct |
|
metrics.update( |
|
{ |
|
"throughput/batches_per_sec": elapsed_batches * world_size / elapsed_wct, |
|
"throughput/samples_per_sec": samples_per_sec, |
|
"throughput/device/batches_per_sec": elapsed_batches / elapsed_wct, |
|
"throughput/device/samples_per_sec": dev_samples_per_sec, |
|
} |
|
) |
|
if lengths is not None: |
|
elapsed_lengths = int(self.history_lengths[-1]) - int(self.history_lengths[0]) |
|
avg_length = elapsed_lengths / elapsed_batches |
|
metrics.update( |
|
{ |
|
"throughput/tokens_per_sec": samples_per_sec * avg_length, |
|
"throughput/device/tokens_per_sec": dev_samples_per_sec * avg_length, |
|
} |
|
) |
|
|
|
if flops_per_batch is not None: |
|
|
|
self.history_flops.append(flops_per_batch * world_size) |
|
if len(self.history_flops) == self.history_flops.maxlen: |
|
elapsed_flops = sum(self.history_flops) - self.history_flops[0] |
|
elapsed_wct = self.history_wct[-1] - self.history_wct[0] |
|
flops_per_sec = elapsed_flops / elapsed_wct |
|
device_flops_per_sec = flops_per_sec / world_size |
|
metrics.update( |
|
{"throughput/flops_per_sec": flops_per_sec, "throughput/device/flops_per_sec": device_flops_per_sec} |
|
) |
|
if self.flops_available: |
|
metrics["throughput/device/mfu"] = device_flops_per_sec / self.flops_available |
|
|
|
metrics.update( |
|
{ |
|
"time/train": train_elapsed / self.divider, |
|
"time/val": self.total_eval_wct / self.divider, |
|
"time/total": (train_elapsed + self.total_eval_wct) / self.divider, |
|
"samples": samples, |
|
} |
|
) |
|
|
|
self.log_dict(metrics, step) |
|
|
|
def eval_end(self, eval_elapsed: float) -> None: |
|
self.total_eval_wct += eval_elapsed |
|
|
|
|
|
def plugin_to_compute_dtype(plugin: Precision) -> torch.dtype: |
|
if isinstance(plugin, BitsandbytesPrecision): |
|
return plugin.dtype |
|
if isinstance(plugin, (HalfPrecision, MixedPrecision, HalfPrecisionPlugin)): |
|
return plugin._desired_input_dtype |
|
if isinstance(plugin, MixedPrecisionPlugin): |
|
return torch.bfloat16 if plugin.precision == "bf16-mixed" else torch.half |
|
if isinstance(plugin, (DoublePrecision, DoublePrecisionPlugin)): |
|
return torch.double |
|
if isinstance(plugin, (XLAPrecision, XLAPrecisionPlugin)): |
|
return plugin._desired_dtype |
|
if isinstance(plugin, TransformerEnginePrecision): |
|
return torch.int8 |
|
if isinstance(plugin, (FSDPPrecision, FSDPPrecisionPlugin)): |
|
return plugin.mixed_precision_config.reduce_dtype |
|
if isinstance(plugin, Precision): |
|
return torch.float32 |
|
raise NotImplementedError(plugin) |
|
|
|
|
|
class SpeedMonitorFabric(SpeedMonitorBase): |
|
def __init__(self, fabric: Fabric, *args: Any, **kwargs: Any) -> None: |
|
dtype = plugin_to_compute_dtype(fabric.strategy.precision) |
|
flops_available = get_flops_available(fabric.device, dtype) |
|
super().__init__(flops_available, fabric.log_dict, *args, **kwargs) |
|
|
|
@fabric_rank_zero_only |
|
def on_train_batch_end(self, *args: Any, **kwargs: Any) -> None: |
|
super().on_train_batch_end(*args, **kwargs) |
|
|
|
|
|
class SpeedMonitorCallback(Callback): |
|
def __init__(self, length_fn: Callable[[Any], int], batch_size: int, **kwargs: Any) -> None: |
|
super().__init__() |
|
self.speed_monitor: Optional[SpeedMonitorBase] = None |
|
self.speed_monitor_kwargs = kwargs |
|
self.length_fn = length_fn |
|
self.batch_size = batch_size |
|
self.eval_t0: int = 0 |
|
self.train_t0: int = 0 |
|
self.total_lengths: int = 0 |
|
|
|
def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None: |
|
if self.speed_monitor is not None: |
|
return |
|
dtype = plugin_to_compute_dtype(trainer.precision_plugin) |
|
flops_available = get_flops_available(trainer.strategy.root_device, dtype) |
|
self.speed_monitor = SpeedMonitorBase(flops_available, trainer.logger.log_metrics, **self.speed_monitor_kwargs) |
|
|
|
@trainer_rank_zero_only |
|
def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: |
|
if trainer.fit_loop._should_accumulate(): |
|
return |
|
|
|
self.train_t0 = time.perf_counter() |
|
|
|
@trainer_rank_zero_only |
|
def on_train_batch_end( |
|
self, trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int |
|
) -> None: |
|
self.total_lengths += self.length_fn(batch) |
|
if trainer.fit_loop._should_accumulate(): |
|
return |
|
train_elapsed = time.perf_counter() - self.train_t0 |
|
assert self.speed_monitor is not None |
|
iter_num = trainer.fit_loop.total_batch_idx |
|
assert (measured_flops := pl_module.measured_flops) is not None |
|
self.speed_monitor.on_train_batch_end( |
|
(iter_num + 1) * self.batch_size, |
|
train_elapsed, |
|
|
|
trainer.world_size, |
|
flops_per_batch=measured_flops, |
|
lengths=self.total_lengths, |
|
) |
|
|
|
@trainer_rank_zero_only |
|
def on_validation_start(self, trainer: Trainer, pl_module: LightningModule) -> None: |
|
self.eval_t0 = time.perf_counter() |
|
|
|
@trainer_rank_zero_only |
|
def on_validation_end(self, trainer: Trainer, pl_module: LightningModule) -> None: |
|
eval_elapsed = time.perf_counter() - self.eval_t0 |
|
assert self.speed_monitor is not None |
|
self.speed_monitor.eval_end(eval_elapsed) |
|
|
|
|
|
def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int: |
|
flops_per_token = 2 * n_params |
|
|
|
|
|
flops_per_seq = flops_per_token * max_seq_length |
|
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2)) |
|
return flops_per_seq + attn_flops_per_seq |
|
|
|
|
|
def estimate_flops(model: GPT) -> int: |
|
"""Measures estimated FLOPs for MFU. |
|
|
|
Refs: |
|
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1 |
|
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2 |
|
""" |
|
|
|
|
|
|
|
|
|
n_trainable_params = num_parameters(model, requires_grad=True) |
|
trainable_flops = flops_per_param( |
|
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params |
|
) |
|
|
|
ops_per_step = 3 if model.training else 1 |
|
n_frozen_params = num_parameters(model, requires_grad=False) |
|
frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params) |
|
|
|
frozen_ops_per_step = 2 if model.training else 1 |
|
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops |
|
|
|
|
|
def measure_flops(model: GPT, x: torch.Tensor) -> int: |
|
"""Measures real FLOPs for HFU""" |
|
flop_counter = FlopCounterMode(model, display=False) |
|
ctx = nullcontext() if model.training else torch.no_grad() |
|
with ctx, flop_counter: |
|
y = model(x) |
|
if model.training: |
|
y.sum().backward() |
|
return flop_counter.get_total_flops() |
|
|