Tharun156's picture
Upload 149 files
f7400bf verified
import copy
from typing import Optional
import torch.nn as nn
import torch
from einops import rearrange
import math
import numpy as np
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model) # (5000, 128)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) # (5000, 1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels: int, time_embed_dim: int, act_fn: str,
out_dim = None, post_act_fn = None,
cond_proj_dim = None, zero_init_cond: bool = True) -> None:
super(TimestepEmbedding, self).__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
if zero_init_cond:
self.cond_proj.weight.data.fill_(0.0)
else:
self.cond_proj = None
# gelu
self.act = torch.nn.GELU() if act_fn == 'gelu' else torch.nn.SiLU()
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = torch.nn.GELU() if post_act_fn == 'gelu' else torch.nn.SiLU()
def forward(self, sample: torch.Tensor, timestep_cond = None) -> torch.Tensor:
if timestep_cond is not None:
sample = sample + self.cond_proj(timestep_cond)
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class TimestepEmbedder(nn.Module):
def __init__(self, latent_dim, sequence_pos_encoder):
super().__init__()
self.latent_dim = latent_dim
self.sequence_pos_encoder = sequence_pos_encoder
time_embed_dim = self.latent_dim
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
def forward(self, timesteps):
return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)
class InputProcess(nn.Module):
def __init__(self, input_feats, latent_dim):
super().__init__()
self.input_feats = input_feats
self.latent_dim = latent_dim
self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim)
def forward(self, x):
x = x.permute((0, 1, 3, 2))
x = self.poseEmbedding(x) # [seqlen, bs, d]
return x
class OutputProcess(nn.Module):
def __init__(self, input_feats, latent_dim):
super().__init__()
self.input_feats = input_feats
self.latent_dim = latent_dim
self.poseFinal = nn.Linear(self.latent_dim, self.input_feats)
def forward(self, output):
bs, n_joints, nframes, d = output.shape
output = self.poseFinal(output)
output = output.permute(0, 1, 3, 2) # [bs, njoints, nfeats, nframes]
output = output.reshape(bs, n_joints * 128, 1, nframes)
return output
class SinusoidalEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
n = x.shape[-2]
t = torch.arange(n, device = x.device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x = rearrange(x, 'b ... (r d) -> b (...) r d', r = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(q, k, freqs):
q, k = map(lambda t: (t * freqs.cos()) + (rotate_half(t) * freqs.sin()), (q, k))
return q, k
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool,
downscale_freq_shift: float) -> None:
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift)
return t_emb
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
) -> torch.Tensor:
# assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def reparameterize(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def init_weight(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight)
# m.bias.data.fill_(0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def init_weight_skcnn(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.kaiming_uniform_(m.weight, a=math.sqrt(5))
# m.bias.data.fill_(0.01)
if m.bias is not None:
#nn.init.constant_(m.bias, 0)
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
def sample(logits, temperature: float = 1.0, top_k: int = 0, top_p: float = 1.0, sample_logits=True):
logits = logits[:, -1, :] / max(temperature, 1e-5)
if top_k > 0 or top_p < 1.0:
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
if sample_logits:
idx = torch.multinomial(probs, num_samples=1)
else:
_, idx = torch.topk(probs, k=1, dim=-1)
return idx, probs
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
def top_k_top_p_filtering(
logits,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
class FlowMatchScheduler():
def __init__(self, num_inference_steps=20, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
self.num_train_timesteps = num_train_timesteps
self.shift = shift
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.inverse_timesteps = inverse_timesteps
self.extra_one_step = extra_one_step
self.reverse_sigmas = reverse_sigmas
self.set_timesteps(num_inference_steps, training=True)
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False):
sigma_start = self.sigma_min + \
(self.sigma_max - self.sigma_min) * denoising_strength
if self.extra_one_step:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
else:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps)
if self.inverse_timesteps:
self.sigmas = torch.flip(self.sigmas, dims=[0])
self.sigmas = self.shift * self.sigmas / \
(1 + (self.shift - 1) * self.sigmas)
if self.reverse_sigmas:
self.sigmas = 1 - self.sigmas
self.timesteps = self.sigmas * self.num_train_timesteps
if training:
x = self.timesteps
y = torch.exp(-2 * ((x - num_inference_steps / 2) /
num_inference_steps) ** 2)
y_shifted = y - y.min()
bsmntw_weighing = y_shifted * \
(num_inference_steps / y_shifted.sum())
self.linear_timesteps_weights = bsmntw_weighing
def step(self, model_output, timestep, sample, to_final=False):
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.sigmas = self.sigmas.to(model_output.device)
self.timesteps = self.timesteps.to(model_output.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
if to_final or (timestep_id + 1 >= len(self.timesteps)).any():
sigma_ = 1 if (
self.inverse_timesteps or self.reverse_sigmas) else 0
else:
sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1)
prev_sample = sample + model_output * (sigma_ - sigma)
return prev_sample
def add_noise(self, original_samples, noise, timestep):
"""
Diffusion forward corruption process.
Input:
- clean_latent: the clean latent with shape [B*T, C, H, W]
- noise: the noise with shape [B*T, C, H, W]
- timestep: the timestep with shape [B*T]
Output: the corrupted latent with shape [B*T, C, H, W]
"""
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.sigmas = self.sigmas.to(noise.device)
self.timesteps = self.timesteps.to(noise.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
sample = (1 - sigma) * original_samples + sigma * noise
return sample.type_as(noise)
def training_target(self, sample, noise, timestep):
target = noise - sample
return target
def training_weight(self, timestep):
"""
Input:
- timestep: the timestep with shape [B*T]
Output: the corresponding weighting [B*T]
"""
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.linear_timesteps_weights = self.linear_timesteps_weights.to(timestep.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(1) - timestep.unsqueeze(0)).abs(), dim=0)
weights = self.linear_timesteps_weights[timestep_id]
return weights