Spaces:
Running
Running
ThanaritKanjanametawat
commited on
Commit
Β·
bd0c703
1
Parent(s):
953bb32
Deploying all model and test files
Browse files
ModelDriver.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
|
|
4 |
|
5 |
|
6 |
device = torch.device("cpu")
|
@@ -28,27 +30,76 @@ def extract_features(text):
|
|
28 |
def RobertaSentinelOpenGPTInference(input_text):
|
29 |
features = extract_features(input_text)
|
30 |
loaded_model = MLP(768).to(device)
|
31 |
-
loaded_model.load_state_dict(torch.load("
|
32 |
|
33 |
# Define the tokenizer and model for feature extraction
|
34 |
with torch.no_grad():
|
35 |
inputs = torch.tensor(features).to(device)
|
36 |
outputs = loaded_model(inputs.float())
|
37 |
-
_, predicted = torch.max(outputs,
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
def RobertaSentinelCSAbstractInference(input_text):
|
42 |
features = extract_features(input_text)
|
43 |
loaded_model = MLP(768).to(device)
|
44 |
-
loaded_model.load_state_dict(torch.load("
|
45 |
|
46 |
# Define the tokenizer and model for feature extraction
|
47 |
with torch.no_grad():
|
48 |
inputs = torch.tensor(features).to(device)
|
49 |
outputs = loaded_model(inputs.float())
|
50 |
-
_, predicted = torch.max(outputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
return predicted.item()
|
53 |
|
54 |
|
|
|
1 |
from transformers import RobertaTokenizer, RobertaForSequenceClassification, RobertaModel
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.utils.data import TensorDataset, DataLoader
|
6 |
|
7 |
|
8 |
device = torch.device("cpu")
|
|
|
30 |
def RobertaSentinelOpenGPTInference(input_text):
|
31 |
features = extract_features(input_text)
|
32 |
loaded_model = MLP(768).to(device)
|
33 |
+
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelOpenGPT.pth", map_location=device))
|
34 |
|
35 |
# Define the tokenizer and model for feature extraction
|
36 |
with torch.no_grad():
|
37 |
inputs = torch.tensor(features).to(device)
|
38 |
outputs = loaded_model(inputs.float())
|
39 |
+
_, predicted = torch.max(outputs, 0)
|
40 |
|
41 |
+
Probs = (F.softmax(outputs, dim=0).cpu().numpy())
|
42 |
+
|
43 |
+
return Probs
|
44 |
|
45 |
def RobertaSentinelCSAbstractInference(input_text):
|
46 |
features = extract_features(input_text)
|
47 |
loaded_model = MLP(768).to(device)
|
48 |
+
loaded_model.load_state_dict(torch.load("SentinelCheckpoint/RobertaSentinelCSAbstract.pth", map_location=device))
|
49 |
|
50 |
# Define the tokenizer and model for feature extraction
|
51 |
with torch.no_grad():
|
52 |
inputs = torch.tensor(features).to(device)
|
53 |
outputs = loaded_model(inputs.float())
|
54 |
+
_, predicted = torch.max(outputs, 0)
|
55 |
+
|
56 |
+
Probs = (F.softmax(outputs, dim=0).cpu().numpy())
|
57 |
+
|
58 |
+
return Probs
|
59 |
+
|
60 |
+
|
61 |
+
def RobertaClassifierOpenGPTInference(input_text):
|
62 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
63 |
+
model_path = "ClassifierCheckpoint/RobertaClassifierOpenGPT.pth"
|
64 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
65 |
+
model.load_state_dict(torch.load(model_path))
|
66 |
+
model = model.to(torch.device('cpu'))
|
67 |
+
model.eval()
|
68 |
+
|
69 |
+
|
70 |
+
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
71 |
+
input_ids = tokenized_input['input_ids'].to(torch.device('cpu'))
|
72 |
+
attention_mask = tokenized_input['attention_mask'].to(torch.device('cpu'))
|
73 |
+
|
74 |
+
# Make a prediction
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
77 |
+
logits = outputs.logits
|
78 |
+
Probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
79 |
+
|
80 |
+
return Probs
|
81 |
+
|
82 |
+
|
83 |
+
def RobertaClassifierCSAbstractInference(input_text):
|
84 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
85 |
+
model_path = "ClassifierCheckpoint/RobertaClassifierCSAbstract.pth"
|
86 |
+
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
|
87 |
+
model.load_state_dict(torch.load(model_path))
|
88 |
+
model = model.to(torch.device('cpu'))
|
89 |
+
model.eval()
|
90 |
+
|
91 |
+
|
92 |
+
tokenized_input = tokenizer(input_text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
93 |
+
input_ids = tokenized_input['input_ids'].to(torch.device('cpu'))
|
94 |
+
attention_mask = tokenized_input['attention_mask'].to(torch.device('cpu'))
|
95 |
+
|
96 |
+
# Make a prediction
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
99 |
+
logits = outputs.logits
|
100 |
+
Probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
101 |
+
|
102 |
+
return Probs
|
103 |
|
|
|
104 |
|
105 |
|
{MLPDictStates β SentinelCheckpoint}/RobertaSentinelCSAbstract.pth
RENAMED
File without changes
|
{MLPDictStates β SentinelCheckpoint}/RobertaSentinelOpenGPT.pth
RENAMED
File without changes
|
Test.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ModelDriver import *
|
2 |
+
import numpy as np
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings("ignore")
|
5 |
+
|
6 |
+
Input_Text = "I want to do this data"
|
7 |
+
|
8 |
+
# print("RobertaSentinelOpenGPTInference")
|
9 |
+
# Probs = RobertaSentinelOpenGPTInference(Input_Text)
|
10 |
+
# Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
11 |
+
#
|
12 |
+
# print(f"Prediction: {Pred} ")
|
13 |
+
# print(f"Confidence:", max(Probs))
|
14 |
+
|
15 |
+
# print("RobertaSentinelCSAbstractInference")
|
16 |
+
# Probs = RobertaSentinelCSAbstractInference(Input_Text)
|
17 |
+
# Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
18 |
+
#
|
19 |
+
# print(f"Prediction: {Pred} ")
|
20 |
+
# print(f"Confidence:", max(Probs))
|
21 |
+
|
22 |
+
print("RobertaClassifierCSAbstractInference")
|
23 |
+
Probs = RobertaClassifierOpenGPTInference(Input_Text)
|
24 |
+
Pred = "Human Written" if not np.argmax(Probs) else "Machine Generated"
|
25 |
+
|
26 |
+
print(Probs)
|
27 |
+
print(f"Prediction: {Pred} ")
|
28 |
+
print(f"Confidence:", max(Probs))
|
app.py
CHANGED
@@ -1,24 +1,42 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
from ModelDriver import
|
|
|
4 |
|
5 |
# Add a title
|
6 |
st.title('GPT Detection Demo')
|
7 |
|
8 |
# Add 4 options for 4 models
|
9 |
-
|
10 |
'Which Model do you want to use?',
|
11 |
-
('
|
|
|
|
|
|
|
|
|
|
|
12 |
)
|
13 |
|
14 |
|
15 |
text = st.text_area('Enter text here', '')
|
16 |
|
17 |
if st.button('Generate'):
|
18 |
-
if
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
st.write(result)
|
23 |
|
24 |
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from ModelDriver import *
|
4 |
+
import numpy as np
|
5 |
|
6 |
# Add a title
|
7 |
st.title('GPT Detection Demo')
|
8 |
|
9 |
# Add 4 options for 4 models
|
10 |
+
ModelOption = st.sidebar.selectbox(
|
11 |
'Which Model do you want to use?',
|
12 |
+
('RobertaSentinel', 'RobertaClassifier'),
|
13 |
+
)
|
14 |
+
|
15 |
+
DatasetOption = st.sidebar.selectbox(
|
16 |
+
'Which Dataset do you want to use?',
|
17 |
+
('OpenGPT', 'CSAbstract'),
|
18 |
)
|
19 |
|
20 |
|
21 |
text = st.text_area('Enter text here', '')
|
22 |
|
23 |
if st.button('Generate'):
|
24 |
+
if ModelOption == 'RobertaSentinel':
|
25 |
+
if DatasetOption == 'OpenGPT':
|
26 |
+
result = RobertaSentinelOpenGPTInference(text)
|
27 |
+
elif DatasetOption == 'CSAbstract':
|
28 |
+
result = RobertaSentinelCSAbstractInference(text)
|
29 |
+
|
30 |
+
elif ModelOption == 'RobertaClassifier':
|
31 |
+
if DatasetOption == 'OpenGPT':
|
32 |
+
result = RobertaClassifierOpenGPTInference(text)
|
33 |
+
elif DatasetOption == 'CSAbstract':
|
34 |
+
result = RobertaClassifierCSAbstractInference(text)
|
35 |
+
|
36 |
+
Prediction = "Human Written" if not np.argmax(result) else "Machine Generated"
|
37 |
+
|
38 |
+
print(f"Prediction: {Prediction} ")
|
39 |
+
print(f"Probabilty:", max(result))
|
40 |
st.write(result)
|
41 |
|
42 |
|