Spaces:
Running
Running
Update search_utils.py
Browse files- search_utils.py +47 -110
search_utils.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
import faiss
|
4 |
-
from pathlib import Path
|
5 |
-
from sentence_transformers import SentenceTransformer, util
|
6 |
-
import streamlit as st
|
7 |
import zipfile
|
8 |
-
import pandas as pd
|
9 |
from pathlib import Path
|
|
|
10 |
import streamlit as st
|
11 |
|
12 |
class MetadataManager:
|
@@ -14,33 +11,39 @@ class MetadataManager:
|
|
14 |
self.shard_dir = Path("metadata_shards")
|
15 |
self.shard_map = {}
|
16 |
self.loaded_shards = {}
|
|
|
17 |
self._ensure_unzipped()
|
18 |
self._build_shard_map()
|
19 |
|
20 |
def _ensure_unzipped(self):
|
21 |
-
"""
|
22 |
if not self.shard_dir.exists():
|
23 |
zip_path = Path("metadata_shards.zip")
|
24 |
if zip_path.exists():
|
25 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
26 |
zip_ref.extractall(self.shard_dir)
|
27 |
-
st.toast("
|
28 |
else:
|
29 |
-
|
|
|
30 |
|
31 |
def _build_shard_map(self):
|
32 |
-
"""
|
33 |
-
|
|
|
34 |
parts = f.stem.split("_")
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
def get_metadata(self,
|
38 |
-
"""Retrieve metadata for
|
39 |
results = []
|
40 |
shard_groups = {}
|
41 |
|
42 |
-
#
|
43 |
-
for idx in
|
44 |
for (start, end), shard in self.shard_map.items():
|
45 |
if start <= idx <= end:
|
46 |
if shard not in shard_groups:
|
@@ -48,125 +51,59 @@ class MetadataManager:
|
|
48 |
shard_groups[shard].append(idx - start)
|
49 |
break
|
50 |
|
51 |
-
# Load required shards
|
52 |
for shard, local_indices in shard_groups.items():
|
53 |
if shard not in self.loaded_shards:
|
54 |
self.loaded_shards[shard] = pd.read_parquet(
|
55 |
self.shard_dir / shard,
|
56 |
columns=["title", "summary", "source"]
|
57 |
)
|
58 |
-
|
59 |
results.append(self.loaded_shards[shard].iloc[local_indices])
|
60 |
|
61 |
return pd.concat(results).reset_index(drop=True)
|
62 |
|
63 |
-
|
64 |
class SemanticSearch:
|
65 |
-
def __init__(self
|
66 |
-
self.shard_dir = Path(
|
67 |
-
self.shard_dir.mkdir(exist_ok=True, parents=True)
|
68 |
self.model = None
|
69 |
self.index_shards = []
|
70 |
self.metadata_mgr = MetadataManager()
|
71 |
-
|
|
|
72 |
@st.cache_resource
|
73 |
def load_model(_self):
|
74 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
75 |
-
|
76 |
def initialize_system(self):
|
77 |
self.model = self.load_model()
|
78 |
-
self.
|
79 |
|
80 |
-
def
|
81 |
-
"""Load FAISS shards
|
|
|
82 |
for shard_path in sorted(self.shard_dir.glob("*.index")):
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def search(self, query, top_k=5):
|
86 |
-
"""
|
87 |
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
for shard_idx, index in enumerate(self.index_shards):
|
92 |
distances, indices = index.search(query_embedding, top_k)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
return self._process_results(np.array(all_scores), np.array(all_indices), top_k)
|
102 |
-
|
103 |
-
def _calculate_global_index(self, shard_idx, local_idx):
|
104 |
-
"""Convert shard-local index to global index"""
|
105 |
-
# Implement your specific shard indexing logic here
|
106 |
-
# Example: return f"{shard_idx}-{local_idx}"
|
107 |
-
return local_idx # Simple version if using unique IDs
|
108 |
-
|
109 |
-
def _process_results(self, distances, indices, top_k):
|
110 |
-
"""Format search results"""
|
111 |
-
results = pd.DataFrame({
|
112 |
-
'global_index': indices,
|
113 |
-
'similarity': 1 - (distances / 2) # L2 to cosine approximation
|
114 |
-
})
|
115 |
-
return results.sort_values('similarity', ascending=False).head(top_k)
|
116 |
-
|
117 |
-
def search_with_threshold(self, query, top_k=5, similarity_threshold=0.6):
|
118 |
-
"""Threshold-filtered search"""
|
119 |
-
results = self.search(query, top_k*2)
|
120 |
-
filtered = results[results['similarity'] > similarity_threshold].head(top_k)
|
121 |
-
return filtered.reset_index(drop=True)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
class MetadataManager:
|
127 |
-
def __init__(self, repo_id, shard_dir="metadata_shards"):
|
128 |
-
self.repo_id = repo_id
|
129 |
-
self.shard_dir = Path(shard_dir)
|
130 |
-
self.shard_map = {}
|
131 |
-
self.loaded_shards = {}
|
132 |
-
self._build_shard_map()
|
133 |
-
|
134 |
-
def _build_shard_map(self):
|
135 |
-
"""Map index ranges to shard files"""
|
136 |
-
for f in self.shard_dir.glob("*.parquet"):
|
137 |
-
parts = f.stem.split("_")
|
138 |
-
self.shard_map[(int(parts[1]), int(parts[2]))] = f.name
|
139 |
-
|
140 |
-
def _download_shard(self, shard_name):
|
141 |
-
"""Download missing shards on demand"""
|
142 |
-
if not (self.shard_dir/shard_name).exists():
|
143 |
-
hf_hub_download(
|
144 |
-
repo_id=self.repo_id,
|
145 |
-
filename=f"metadata_shards/{shard_name}",
|
146 |
-
local_dir=self.shard_dir,
|
147 |
-
cache_dir="metadata_cache"
|
148 |
-
)
|
149 |
-
|
150 |
-
def get_metadata(self, indices):
|
151 |
-
"""Retrieve metadata for specific indices"""
|
152 |
-
results = []
|
153 |
-
|
154 |
-
# Group indices by shard
|
155 |
-
shard_groups = {}
|
156 |
-
for idx in indices:
|
157 |
-
for (start, end), shard in self.shard_map.items():
|
158 |
-
if start <= idx <= end:
|
159 |
-
if shard not in shard_groups:
|
160 |
-
shard_groups[shard] = []
|
161 |
-
shard_groups[shard].append(idx - start)
|
162 |
-
break
|
163 |
-
|
164 |
-
# Process each required shard
|
165 |
-
for shard, local_indices in shard_groups.items():
|
166 |
-
if shard not in self.loaded_shards:
|
167 |
-
self._download_shard(shard)
|
168 |
-
self.loaded_shards[shard] = pd.read_parquet(self.shard_dir/shard)
|
169 |
-
|
170 |
-
results.append(self.loaded_shards[shard].iloc[local_indices])
|
171 |
-
|
172 |
-
return pd.concat(results).reset_index(drop=True)
|
|
|
1 |
import numpy as np
|
2 |
import pandas as pd
|
3 |
import faiss
|
|
|
|
|
|
|
4 |
import zipfile
|
|
|
5 |
from pathlib import Path
|
6 |
+
from sentence_transformers import SentenceTransformer, util
|
7 |
import streamlit as st
|
8 |
|
9 |
class MetadataManager:
|
|
|
11 |
self.shard_dir = Path("metadata_shards")
|
12 |
self.shard_map = {}
|
13 |
self.loaded_shards = {}
|
14 |
+
self.total_docs = 0
|
15 |
self._ensure_unzipped()
|
16 |
self._build_shard_map()
|
17 |
|
18 |
def _ensure_unzipped(self):
|
19 |
+
"""Handle ZIP extraction automatically"""
|
20 |
if not self.shard_dir.exists():
|
21 |
zip_path = Path("metadata_shards.zip")
|
22 |
if zip_path.exists():
|
23 |
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
24 |
zip_ref.extractall(self.shard_dir)
|
25 |
+
st.toast("π¦ Metadata shards extracted successfully!", icon="β
")
|
26 |
else:
|
27 |
+
st.error("β Missing metadata_shards.zip file!")
|
28 |
+
raise FileNotFoundError("Metadata ZIP file not found")
|
29 |
|
30 |
def _build_shard_map(self):
|
31 |
+
"""Create index range to shard mapping"""
|
32 |
+
self.total_docs = 0
|
33 |
+
for f in sorted(self.shard_dir.glob("*.parquet")):
|
34 |
parts = f.stem.split("_")
|
35 |
+
start = int(parts[1])
|
36 |
+
end = int(parts[2])
|
37 |
+
self.shard_map[(start, end)] = f.name
|
38 |
+
self.total_docs = max(self.total_docs, end + 1)
|
39 |
|
40 |
+
def get_metadata(self, global_indices):
|
41 |
+
"""Retrieve metadata for global indices"""
|
42 |
results = []
|
43 |
shard_groups = {}
|
44 |
|
45 |
+
# Organize indices by their respective shards
|
46 |
+
for idx in global_indices:
|
47 |
for (start, end), shard in self.shard_map.items():
|
48 |
if start <= idx <= end:
|
49 |
if shard not in shard_groups:
|
|
|
51 |
shard_groups[shard].append(idx - start)
|
52 |
break
|
53 |
|
54 |
+
# Load and process required shards
|
55 |
for shard, local_indices in shard_groups.items():
|
56 |
if shard not in self.loaded_shards:
|
57 |
self.loaded_shards[shard] = pd.read_parquet(
|
58 |
self.shard_dir / shard,
|
59 |
columns=["title", "summary", "source"]
|
60 |
)
|
|
|
61 |
results.append(self.loaded_shards[shard].iloc[local_indices])
|
62 |
|
63 |
return pd.concat(results).reset_index(drop=True)
|
64 |
|
|
|
65 |
class SemanticSearch:
|
66 |
+
def __init__(self):
|
67 |
+
self.shard_dir = Path("compressed_shards")
|
|
|
68 |
self.model = None
|
69 |
self.index_shards = []
|
70 |
self.metadata_mgr = MetadataManager()
|
71 |
+
self.shard_sizes = []
|
72 |
+
|
73 |
@st.cache_resource
|
74 |
def load_model(_self):
|
75 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
76 |
+
|
77 |
def initialize_system(self):
|
78 |
self.model = self.load_model()
|
79 |
+
self._load_faiss_shards()
|
80 |
|
81 |
+
def _load_faiss_shards(self):
|
82 |
+
"""Load all FAISS index shards"""
|
83 |
+
self.shard_sizes = []
|
84 |
for shard_path in sorted(self.shard_dir.glob("*.index")):
|
85 |
+
index = faiss.read_index(str(shard_path))
|
86 |
+
self.index_shards.append(index)
|
87 |
+
self.shard_sizes.append(index.ntotal)
|
88 |
+
|
89 |
+
def _global_index(self, shard_idx, local_idx):
|
90 |
+
"""Convert local index to global index"""
|
91 |
+
return sum(self.shard_sizes[:shard_idx]) + local_idx
|
92 |
|
93 |
def search(self, query, top_k=5):
|
94 |
+
"""Main search functionality"""
|
95 |
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
96 |
+
all_distances = []
|
97 |
+
all_global_indices = []
|
98 |
+
|
99 |
+
# Search across all shards
|
100 |
for shard_idx, index in enumerate(self.index_shards):
|
101 |
distances, indices = index.search(query_embedding, top_k)
|
102 |
+
global_indices = [self._global_index(shard_idx, idx) for idx in indices[0]]
|
103 |
+
all_distances.extend(distances[0])
|
104 |
+
all_global_indices.extend(global_indices)
|
105 |
+
|
106 |
+
# Process and format results
|
107 |
+
results = self.metadata_mgr.get_metadata(all_global_indices)
|
108 |
+
results['similarity'] = 1 - (np.array(all_distances) / 2) # Convert L2 to cosine
|
109 |
+
return results.sort_values('similarity', ascending=False).head(top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|