import numpy as np | |
import os | |
import torch | |
from facenet_pytorch import MTCNN, InceptionResnetV1 | |
import logging | |
logger = logging.getLogger(__name__) | |
class FacialProcessing: | |
def __init__(self): | |
# Set the cache directory to a writable location | |
os.environ['TORCH_HOME'] = '/tmp/.cache/torch' | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.mtcnn = MTCNN(keep_all=True, device=device) | |
self.resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
def extract_embeddings_vgg(self, image): | |
try: | |
# Preprocess the image | |
preprocessed_image = self.mtcnn(image) | |
if preprocessed_image is None: | |
logger.warning(f"No face detected in image") | |
return None | |
# Extract the face embeddings | |
embeddings = self.resnet(preprocessed_image.unsqueeze(0)).detach().cpu().numpy().tolist() | |
if embeddings: | |
return embeddings[0] | |
except Exception as e: | |
logger.error(f"An error occurred while extracting embeddings: {e}") | |
return None | |