Tesneem commited on
Commit
a7542ae
·
verified ·
1 Parent(s): 5ced48b

Create Netflix_Recommendation_Notebook_Code

Browse files
Netflix_Recommendation_Notebook_Code ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #ran on Kaggle
3
+ !pip install sentence-transformers
4
+ !pip install torch
5
+ import torch
6
+ from sentence_transformers import SentenceTransformer
7
+ import numpy as np
8
+ import pandas as pd
9
+ from tqdm import tqdm # For tracking progress in batches
10
+
11
+ # Check if GPU is available
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ print(f"Using device: {device}")
14
+
15
+ # Load dataset
16
+ dataset = pd.read_csv('/kaggle/input/d/infamouscoder/dataset-netflix-shows/netflix_titles.csv')
17
+
18
+ # Load model to GPU if available
19
+ model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
20
+
21
+ # Combine fields for embeddings
22
+ def combine_description_title_and_genre(description, listed_in, title):
23
+ return f"{description} Genre: {listed_in} Title: {title}"
24
+
25
+ # Create combined text column
26
+ dataset['combined_text'] = dataset.apply(lambda row: combine_description_title_and_genre(row['description'], row['listed_in'], row['title']), axis=1)
27
+
28
+ # Generate embeddings in batches to save memory
29
+ batch_size = 32
30
+ embeddings = []
31
+
32
+ for i in tqdm(range(0, len(dataset), batch_size), desc="Generating Embeddings"):
33
+ batch_texts = dataset['combined_text'][i:i+batch_size].tolist()
34
+ batch_embeddings = model.encode(batch_texts, convert_to_tensor=True, device=device)
35
+ embeddings.extend(batch_embeddings.cpu().numpy()) # Move to CPU to save memory
36
+
37
+ # Convert list to numpy array
38
+ embeddings = np.array(embeddings)
39
+
40
+ # Save embeddings and metadata
41
+ np.save("/kaggle/working/netflix_embeddings.npy", embeddings)
42
+ dataset[['show_id', 'title', 'description', 'listed_in']].to_csv("/kaggle/working/netflix_metadata.csv", index=False)