# set path | |
import glob, os, sys; | |
sys.path.append('../utils') | |
from setfit import SetFitModel | |
#import needed libraries | |
#import seaborn as sns | |
#import matplotlib.pyplot as plt | |
#import numpy as np | |
#import pandas as pd | |
#import streamlit as st | |
from utils.groups_classifier import load_groupsClassifier, groups_classification | |
#import logging | |
#logger = logging.getLogger(__name__) | |
from utils.config import get_classifier_params | |
#from utils.preprocessing import paraLengthCheck | |
#from io import BytesIO | |
#import xlsxwriter | |
#import plotly.express as px | |
vg_model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups") | |
# Retrieve the necessary paramaters | |
classifier_identifier = 'group_classification' | |
params = get_classifier_params(classifier_identifier) | |
def app(): | |
### Main app code ### | |
with st.container(): | |
# Classify groups | |
df = group_classification(haystack_doc=df, threshold= params['threshold']) | |
def groups_display(): | |
# if 'key1' in st.session_state: | |
# df = st.session_state.key1 | |
# df['Action_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Action' in x else False) | |
# hits = df[df['Action_check'] == True] | |
# # hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i]) | |
# range_val = min(5,len(hits)) | |
# if range_val !=0: | |
# count_action = len(hits) | |
# st.write("") | |
# st.markdown("###### Top few Action Classified paragraph/text results from list of {} classified paragraphs ######".format(count_action)) | |
# st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True) | |
# range_val = min(5,len(hits)) | |
# for i in range(range_val): | |
# # the page number reflects the page that contains the main paragraph | |
# # according to split limit, the overlapping part can be on a separate page | |
# st.write('**Result {}** : `page {}`, `Sector: {}`,\ | |
# `Indicators: {}`, `Adapt-Mitig :{}`'\ | |
# .format(i+1, | |
# hits.iloc[i]['page'], hits.iloc[i]['Sector Label'], | |
# hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label'])) | |
# st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " "))) | |
# hits = hits.reset_index(drop =True) | |
# st.write('----------------') | |
# st.write('Explore the data') | |
# st.write(hits) | |
# df.drop(columns = ['Action_check'],inplace=True) | |
# df_xlsx = to_excel(df) | |
# with st.sidebar: | |
# st.write('-------------') | |
# st.download_button(label='π₯ Download Result', | |
# data=df_xlsx , | |
# file_name= 'cpu_analysis.xlsx') | |
# else: | |
# st.info("π€ No Actions found") | |
# def groups_display(): | |
# if 'key1' in st.session_state: | |
# df = st.session_state.key1 | |
# df['Policy_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Policies & Plans' in x else False) | |
# hits = df[df['Policy_check'] == True] | |
# # hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i]) | |
# range_val = min(5,len(hits)) | |
# if range_val !=0: | |
# count_policy = len(hits) | |
# st.write("") | |
# st.markdown("###### Top few Policy/Plans Classified paragraph/text results from list of {} classified paragraphs ######".format(count_policy)) | |
# st.markdown("""<hr style="height:10px;border:none;color:#097969;background-color:#097969;" /> """, unsafe_allow_html=True) | |
# range_val = min(5,len(hits)) | |
# for i in range(range_val): | |
# # the page number reflects the page that contains the main paragraph | |
# # according to split limit, the overlapping part can be on a separate page | |
# st.write('**Result {}** : `page {}`, `Sector: {}`,\ | |
# `Indicators: {}`, `Adapt-Mitig :{}`'\ | |
# .format(i+1, | |
# hits.iloc[i]['page'], hits.iloc[i]['Sector Label'], | |
# hits.iloc[i]['Indicator Label'],hits.iloc[i]['Adapt-Mitig Label'])) | |
# st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " "))) | |
# hits = hits.reset_index(drop =True) | |
# st.write('----------------') | |
# st.write('Explore the data') | |
# st.write(hits) | |
# df.drop(columns = ['Policy_check'],inplace=True) | |
# df_xlsx = to_excel(df) | |
# with st.sidebar: | |
# st.write('-------------') | |
# st.download_button(label='π₯ Download Result', | |
# data=df_xlsx , | |
# file_name= 'vulnerable_groups.xlsx') | |
# else: | |
# st.info("π€ No Groups found") | |