BID / data_processor.py
Teoman21's picture
Add project files with LFS for large CSV
a48d292
"""Data loading, cleaning, and filtering helpers for the BI dashboard."""
from __future__ import annotations
from dataclasses import dataclass
from io import BytesIO
from pathlib import Path
from typing import Dict, Iterable, List, Mapping, Optional, Tuple
import pandas as pd
from utils import (
ColumnTypes,
PREVIEW_ROWS,
coerce_datetime_columns,
ensure_unique_columns,
infer_column_types,
is_supported_file,
)
SAMPLE_DATA_DIR = Path(__file__).resolve().parent / "data"
SAMPLE_DESCRIPTIONS = {
"train.csv": "Weekly Walmart sales with markdowns and holidays (training set).",
"test.csv": "Companion test set without weekly sales labels.",
"features.csv": "Store-level features such as markdowns, CPI, unemployment.",
"stores.csv": "Store metadata including type and size.",
}
@dataclass(frozen=True)
class DatasetBundle:
"""Container storing the dataset and metadata required by the UI."""
dataframe: pd.DataFrame
column_types: ColumnTypes
source_name: str
def load_dataset(file_obj) -> DatasetBundle:
"""Load the provided uploaded file into a pandas DataFrame.
Parameters
----------
file_obj:
File-like object produced by the Gradio upload widget.
Returns
-------
DatasetBundle
Loaded dataset alongside inferred column metadata.
Raises
------
ValueError
If the file cannot be read or uses an unsupported format.
"""
if file_obj is None:
raise ValueError("Please upload a CSV or Excel file.")
file_name = getattr(file_obj, "name", None)
original_name = getattr(file_obj, "orig_name", file_name)
if not original_name or not is_supported_file(original_name):
raise ValueError("Unsupported file type. Please upload a CSV or Excel file.")
path_candidate = Path(str(file_name)) if file_name else None
dataframe: Optional[pd.DataFrame] = None
try:
if path_candidate and path_candidate.exists():
dataframe = _read_from_path(path_candidate, original_name)
else:
dataframe = _read_from_buffer(file_obj, original_name)
except Exception as exc: # pragma: no cover - defensive conversion
raise ValueError(f"Unable to load dataset: {exc}") from exc
if dataframe is None:
raise ValueError("Failed to load dataset. The file may be empty or corrupted.")
dataframe = ensure_unique_columns(dataframe)
dataframe, datetime_cols = coerce_datetime_columns(dataframe)
column_types = infer_column_types(dataframe)
# Ensure newly detected datetime columns are included in metadata
column_types = ColumnTypes(
numeric=column_types.numeric,
categorical=column_types.categorical,
datetime=tuple(sorted(set(column_types.datetime + tuple(datetime_cols)))),
)
return DatasetBundle(
dataframe=dataframe,
column_types=column_types,
source_name=Path(original_name).name,
)
def _read_from_path(path: Path, original_name: str) -> pd.DataFrame:
"""Read a dataset from disk."""
suffix = path.suffix.lower()
if suffix == ".csv":
return pd.read_csv(path)
if suffix in {".xlsx", ".xls"}:
return pd.read_excel(path)
raise ValueError(f"Unsupported file extension in {original_name}.")
def _read_from_buffer(file_obj, original_name: str) -> pd.DataFrame:
"""Read a dataset from an in-memory buffer."""
bytes_data = getattr(file_obj, "read", lambda: b"")()
if not bytes_data:
raise ValueError(f"The uploaded file '{original_name}' is empty.")
buffer = BytesIO(bytes_data)
lowered = original_name.lower()
if lowered.endswith(".csv"):
return pd.read_csv(buffer)
if lowered.endswith((".xlsx", ".xls")):
return pd.read_excel(buffer)
raise ValueError("Only CSV and Excel files are supported.")
def dataset_overview(df: pd.DataFrame) -> Dict[str, object]:
"""Return basic information about the dataset."""
info = {
"Rows": int(df.shape[0]),
"Columns": int(df.shape[1]),
"Memory Usage (MB)": round(df.memory_usage(deep=True).sum() / (1024**2), 2),
}
dtypes = pd.DataFrame({"Column": df.columns, "Type": df.dtypes.astype(str)})
return {"info": info, "dtypes": dtypes}
def dataset_preview(df: pd.DataFrame, rows: int = PREVIEW_ROWS) -> Dict[str, pd.DataFrame]:
"""Return head and tail previews of the dataset."""
return {
"head": df.head(rows),
"tail": df.tail(rows),
}
def numeric_summary(df: pd.DataFrame) -> pd.DataFrame:
"""Compute descriptive statistics for numeric columns."""
numeric_df = df.select_dtypes(include=["number"])
if numeric_df.empty:
return pd.DataFrame()
summary = pd.DataFrame(
{
"count": numeric_df.count(),
"mean": numeric_df.mean(),
"median": numeric_df.median(),
"std": numeric_df.std(),
"min": numeric_df.min(),
"25%": numeric_df.quantile(0.25),
"75%": numeric_df.quantile(0.75),
"max": numeric_df.max(),
}
)
summary.index.name = "column"
return summary.round(3)
def categorical_summary(df: pd.DataFrame, top_values: int = 5) -> pd.DataFrame:
"""Compute summary statistics for categorical columns."""
categorical_cols = df.select_dtypes(exclude=["number", "datetime64[ns]", "datetime64[ns, UTC]"])
if categorical_cols.empty:
return pd.DataFrame()
rows: List[Dict[str, object]] = []
for column in categorical_cols:
series = categorical_cols[column]
mode_series = series.mode(dropna=True)
mode_value = mode_series.iloc[0] if not mode_series.empty else None
counts = series.value_counts(dropna=True).head(top_values)
top_repr = ", ".join(f"{idx} ({count})" for idx, count in counts.items())
rows.append(
{
"column": column,
"unique_values": int(series.nunique(dropna=True)),
"mode": mode_value,
"mode_count": int(counts.iloc[0]) if not counts.empty else 0,
f"top_{top_values}": top_repr,
}
)
return pd.DataFrame(rows)
def missing_value_report(df: pd.DataFrame) -> pd.DataFrame:
"""Return the count and percentage of missing values per column."""
missing_counts = df.isna().sum()
if missing_counts.sum() == 0:
return pd.DataFrame(columns=["column", "missing_count", "missing_pct"])
missing_pct = (missing_counts / len(df)) * 100
report = pd.DataFrame(
{
"column": missing_counts.index,
"missing_count": missing_counts.values,
"missing_pct": missing_pct.values,
}
)
return report.sort_values(by="missing_pct", ascending=False).reset_index(drop=True).round({"missing_pct": 2})
def correlation_matrix(df: pd.DataFrame) -> pd.DataFrame:
"""Compute the correlation matrix for numeric columns."""
numeric_df = df.select_dtypes(include=["number"])
if numeric_df.empty or numeric_df.shape[1] < 2:
return pd.DataFrame()
corr = numeric_df.corr()
return corr.round(3)
def filter_dataframe(
df: pd.DataFrame,
numeric_filters: Mapping[str, Tuple[Optional[float], Optional[float]]],
categorical_filters: Mapping[str, Iterable[str]],
date_filters: Mapping[str, Tuple[Optional[str], Optional[str]]],
) -> pd.DataFrame:
"""Filter the dataset according to the provided filter definitions."""
filtered = df.copy()
for column, bounds in numeric_filters.items():
if column not in filtered.columns or bounds is None:
continue
lower, upper = bounds
series = filtered[column]
if lower is not None:
filtered = filtered[series >= lower]
if upper is not None:
filtered = filtered[series <= upper]
for column, values in categorical_filters.items():
if column not in filtered.columns:
continue
values = list(values)
if not values:
continue
filtered = filtered[filtered[column].isin(values)]
for column, bounds in date_filters.items():
if column not in filtered.columns or bounds is None:
continue
start, end = bounds
series = pd.to_datetime(filtered[column], errors="coerce")
if start:
filtered = filtered[series >= pd.to_datetime(start)]
if end:
filtered = filtered[series <= pd.to_datetime(end)]
return filtered
def filter_metadata(df: pd.DataFrame, column_types: ColumnTypes, categorical_limit: int = 200) -> Dict[str, object]:
"""Pre-compute useful metadata for rendering filter controls."""
metadata: Dict[str, object] = {"numeric": {}, "categorical": {}, "datetime": {}}
for column in column_types.numeric:
series = df[column].dropna()
if series.empty:
continue
metadata["numeric"][column] = {
"min": float(series.min()),
"max": float(series.max()),
}
for column in column_types.categorical:
series = df[column].dropna().astype(str)
unique_values = series.unique().tolist()
if len(unique_values) > categorical_limit:
unique_values = unique_values[:categorical_limit]
metadata["categorical"][column] = unique_values
for column in column_types.datetime:
series = pd.to_datetime(df[column], errors="coerce")
series = series.dropna()
if series.empty:
continue
metadata["datetime"][column] = {
"min": series.min().date(),
"max": series.max().date(),
}
return metadata
def sample_dataset_options() -> Dict[str, str]:
"""Return available bundled datasets and their descriptions."""
options: Dict[str, str] = {}
if not SAMPLE_DATA_DIR.exists():
return options
for path in sorted(SAMPLE_DATA_DIR.iterdir()):
if not path.is_file():
continue
if path.suffix.lower() not in {".csv", ".xlsx", ".xls"}:
continue
description = SAMPLE_DESCRIPTIONS.get(path.name, f"Sample dataset sourced from '{path.name}'.")
options[path.name] = description
return options
def load_sample_dataset(selection: str) -> DatasetBundle:
"""Load a dataset bundled inside the local data directory."""
if not selection:
raise ValueError("Please select a sample dataset from the dropdown.")
path = SAMPLE_DATA_DIR / selection
if not path.exists():
raise ValueError(
f"Sample dataset '{selection}' was not found in the 'data/' directory. "
"Ensure the file exists and try again."
)
dataframe = _read_from_path(path, selection)
dataframe = ensure_unique_columns(dataframe)
dataframe, datetime_cols = coerce_datetime_columns(dataframe)
column_types = infer_column_types(dataframe)
column_types = ColumnTypes(
numeric=column_types.numeric,
categorical=column_types.categorical,
datetime=tuple(sorted(set(column_types.datetime + tuple(datetime_cols)))),
)
return DatasetBundle(
dataframe=dataframe,
column_types=column_types,
source_name=selection,
)