TensorCruncher commited on
Commit
55d5128
·
verified ·
1 Parent(s): 6a27992

Upload 5 files

Browse files
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+
5
+ from model import create_effnetb2_model
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+
9
+ with open("class_names.txt", "r") as f:
10
+ class_names = [food_name.strip() for food_name in f.readlines()]
11
+
12
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
13
+ num_classes=101,
14
+ )
15
+
16
+ effnetb2.load_state_dict(
17
+ torch.load(
18
+ f="pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
19
+ map_location=torch.device("cpu"),
20
+ )
21
+ )
22
+
23
+ def predict(img) -> Tuple[Dict, float]:
24
+ """Transforms and performs a prediction on img and returns prediction and time taken.
25
+ """
26
+ start_time = timer()
27
+
28
+ img = effnetb2_transforms(img).unsqueeze(0)
29
+
30
+ effnetb2.eval()
31
+ with torch.inference_mode():
32
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
33
+
34
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
35
+
36
+ pred_time = round(timer() - start_time, 5)
37
+
38
+ return pred_labels_and_probs, pred_time
39
+
40
+ title = "Food Image Classifier 🍕 🍔 🌮 🍰"
41
+ description = "An EfficientNetB2 model that classifies images of food into [101 different classes](https://github.com/TensorCruncher/food-image-classifier/blob/main/data/food101_class_names.txt)."
42
+ article = "View on [GitHub](https://github.com/TensorCruncher/food-image-classifier)."
43
+
44
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
45
+
46
+ demo = gr.Interface(
47
+ fn=predict,
48
+ inputs=gr.Image(type="pil"),
49
+ outputs=[
50
+ gr.Label(num_top_classes=5, label="Predictions"),
51
+ gr.Number(label="Prediction time (s)"),
52
+ ],
53
+ examples=example_list,
54
+ title=title,
55
+ description=description,
56
+ article=article,
57
+ )
58
+
59
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
model.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
21
+ transforms = weights.transforms()
22
+ model = torchvision.models.efficientnet_b2(weights=weights)
23
+
24
+ for param in model.parameters():
25
+ param.requires_grad = False
26
+
27
+ torch.manual_seed(seed)
28
+ model.classifier = nn.Sequential(
29
+ nn.Dropout(p=0.3, inplace=True),
30
+ nn.Linear(in_features=1408, out_features=num_classes),
31
+ )
32
+
33
+ return model, transforms
pretrained_effnetb2_feature_extractor_food101_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f3e3984ed67651302781fbc4a452a3f92c2781d11251d6f7d5817f799ff9d0f
3
+ size 31855674
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ torchvision
3
+ gradio