VLog / models /kts_src /cpd_nonlin.py
leiwx52's picture
VLog hf gradio demo
5a444be
raw
history blame
3.57 kB
import numpy as np
# from scipy import weave
def calc_scatters(K):
n = K.shape[0]
K1 = np.cumsum([0] + list(np.diag(K)))
K2 = np.zeros((n+1, n+1))
K2[1:, 1:] = np.cumsum(np.cumsum(K, 0), 1) # TODO: use the fact that K - symmetric
scatters = np.zeros((n, n))
# code = r"""
# for (int i = 0; i < n; i++) {
# for (int j = i; j < n; j++) {
# scatters(i,j) = K1(j+1)-K1(i) - (K2(j+1,j+1)+K2(i,i)-K2(j+1,i)-K2(i,j+1))/(j-i+1);
# }
# }
# """
# weave.inline(code, ['K1','K2','scatters','n'], global_dict = \
# {'K1':K1, 'K2':K2, 'scatters':scatters, 'n':n}, type_converters=weave.converters.blitz)
for i in range(n):
for j in range(i, n):
scatters[i,j] = K1[j+1] - K1[i] - (K2[j+1,j+1]+K2[i,i]-K2[j+1,i]-K2[i,j+1])/(j-i+1)
return scatters
def cpd_nonlin(K, ncp, lmin=1, lmax=100000, backtrack=True, verbose=False,
out_scatters=None):
""" Change point detection with dynamic programming
K - square kernel matrix
ncp - number of change points to detect (ncp >= 0)
lmin - minimal length of a segment
lmax - maximal length of a segment
backtrack - when False - only evaluate objective scores (to save memory)
Returns: (cps, obj)
cps - detected array of change points: mean is thought to be constant on [ cps[i], cps[i+1] )
obj_vals - values of the objective function for 0..m changepoints
"""
m = int(ncp) # prevent numpy.int64
(n, n1) = K.shape
assert(n == n1), "Kernel matrix awaited."
assert(n >= (m + 1)*lmin)
assert(n <= (m + 1)*lmax)
assert(lmax >= lmin >= 1)
# if verbose:
# print("Precomputing scatters...")
J = calc_scatters(K)
if out_scatters != None:
out_scatters[0] = J
# if verbose:
# print("Inferring best change points...")
I = 1e101*np.ones((m+1, n+1))
I[0, lmin:lmax] = J[0, lmin-1:lmax-1]
if backtrack:
p = np.zeros((m+1, n+1), dtype=int)
else:
p = np.zeros((1,1), dtype=int)
# code = r"""
# #define max(x,y) ((x)>(y)?(x):(y))
# for (int k=1; k<m+1; k++) {
# for (int l=(k+1)*lmin; l<n+1; l++) {
# I(k, l) = 1e100; //nearly infinity
# for (int t=max(k*lmin,l-lmax); t<l-lmin+1; t++) {
# double c = I(k-1, t) + J(t, l-1);
# if (c < I(k, l)) {
# I(k, l) = c;
# if (backtrack == 1) {
# p(k, l) = t;
# }
# }
# }
# }
# }
# """
# weave.inline(code, ['m','n','p','I', 'J', 'lmin', 'lmax', 'backtrack'], \
# global_dict={'m':m, 'n':n, 'p':p, 'I':I, 'J':J, \
# 'lmin':lmin, 'lmax':lmax, 'backtrack': int(1) if backtrack else int(0)},
# type_converters=weave.converters.blitz)
for k in range(1, m+1):
for l in range((k+1)*lmin, n+1):
I[k, l] = 1e100
for t in range(max(k*lmin,l-lmax), l-lmin+1):
c = I[k-1, t] + J[t, l-1]
if (c < I[k, l]):
I[k, l] = c
if (backtrack == 1):
p[k, l] = t
# Collect change points
cps = np.zeros(m, dtype=int)
if backtrack:
cur = n
for k in range(m, 0, -1):
cps[k-1] = p[k, cur]
cur = cps[k-1]
scores = I[:, n].copy()
scores[scores > 1e99] = np.inf
return cps, scores