valhalla's picture
Update app.py
59db96e
raw
history blame
7.22 kB
#!/usr/bin/env python
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF
from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter
DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
styles = [
{
"name": "cinematic-default",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
},
{
"name": "sai-3d-model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting"
},
{
"name": "sai-anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast"
},
{
"name": "sai-digital art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly"
},
{
"name": "sai-photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
},
{
"name": "sai-pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
},
{
"name": "sai-fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"
},
]
styles = {k['name']: (k['prompt'], k['negative_prompt']) for k in styles}
default_style = styles['sai-photographic']
style_names = list(styles.keys())
def apply_style(style, positive, negative=""):
p, n = styles.get(style, default_style)
return p.replace('{prompt}', positive), n + negative
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
adapter=adapter,
safety_checker=None,
torch_dtype=torch.float16,
variant="fp16",
scheduler=scheduler,
)
pipe.to(device)
else:
pipe = None
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def run(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
style=default_style,
num_steps=25,
guidance_scale=5,
adapter_conditioning_scale=0.8,
seed=0,
) -> PIL.Image.Image:
image = image.convert("RGB").resize((1024, 1024))
image = TF.to_tensor(image) > 0.5
image = TF.to_pil_image(image.to(torch.float32))
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
generator = torch.Generator(device=device).manual_seed(seed)
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
adapter_conditioning_scale=adapter_conditioning_scale,
).images[0]
return out
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(
source="canvas",
tool="sketch",
type="pil",
image_mode="1",
invert_colors=True,
# shape=(1024, 1024),
brush_radius=4,
height=1024,
width=1024,
)
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
style = gr.Dropdown(
choices=style_names,
value=default_style,
label="Style"
)
negative_prompt = gr.Textbox(
label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality"
)
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
adapter_conditioning_scale = gr.Slider(
label="Adapter Conditioning Ccale",
minimum=0.5,
maximum=1,
step=0.1,
value=.85,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Image(label="Result", height=600)
inputs = [
image,
prompt,
negative_prompt,
style,
num_steps,
guidance_scale,
adapter_conditioning_scale,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()