Spaces:
Runtime error
Runtime error
demo
Browse files- app.py +100 -102
- configs/visual_tokenizer/qwen_vitg_448.yaml +1 -1
- conversation.py +12 -10
- pretrained/seed_story/george_sft/pytorch_model.bin +1 -1
app.py
CHANGED
@@ -37,6 +37,7 @@ IMG_TOKEN = '<img_{:05d}>'
|
|
37 |
IMG_FLAG = '<image>'
|
38 |
num_img_in_tokens = 64
|
39 |
num_img_out_tokens = 64
|
|
|
40 |
|
41 |
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
|
42 |
'2x3', '3x2', '2x4', '4x2']
|
@@ -119,6 +120,7 @@ class LLMService:
|
|
119 |
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
|
120 |
|
121 |
self.agent.eval().to(self.llm_device, dtype=self.dtype)
|
|
|
122 |
print('Init agent mdoel Done')
|
123 |
|
124 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
|
@@ -166,10 +168,13 @@ service = LLMService(args)
|
|
166 |
|
167 |
|
168 |
@spaces.GPU
|
169 |
-
def generate(text_list, image_list, max_new_tokens):
|
170 |
with torch.no_grad():
|
|
|
171 |
text_list = text_list.split(IMG_FLAG)
|
|
|
172 |
top_p = 0.5
|
|
|
173 |
assert len(text_list) == len(image_list) + 1
|
174 |
|
175 |
image_tokens = BOI_TOKEN + ''.join(
|
@@ -181,31 +186,12 @@ def generate(text_list, image_list, max_new_tokens):
|
|
181 |
embeds_cmp_mask = []
|
182 |
embeds_gen_mask = []
|
183 |
|
184 |
-
if service.multi_resolution:
|
185 |
-
patch_pos = []
|
186 |
-
image_patch_length = []
|
187 |
-
image_size_list = []
|
188 |
-
|
189 |
for idx, image_item in enumerate(image_list):
|
190 |
if isinstance(image_item, str):
|
191 |
image = decode_image(image_item)
|
192 |
print('after decode image size:', image.size)
|
193 |
input_images.append(image)
|
194 |
|
195 |
-
# if service.multi_resolution:
|
196 |
-
# image_size_list.append(image.size)
|
197 |
-
# print('image size:', image.size)
|
198 |
-
# image_tensor, patch_pos_tensor = process_anyres_image(image, service.image_transform,
|
199 |
-
# service.grid_pinpoints,
|
200 |
-
# service.base_resolution)
|
201 |
-
# image_tensor_list.append(image_tensor)
|
202 |
-
# patch_pos.append(patch_pos_tensor)
|
203 |
-
# image_patch_length.append(image_tensor.shape[0])
|
204 |
-
# print('image_patch_length', image_patch_length)
|
205 |
-
# embeds_cmp_mask.extend([True] * image_tensor.shape[0])
|
206 |
-
# embeds_gen_mask.extend([False] * image_tensor.shape[0])
|
207 |
-
#
|
208 |
-
# else:
|
209 |
image_tensor = service.image_transform(image)
|
210 |
image_tensor_list.append(image_tensor)
|
211 |
embeds_cmp_mask.append(True)
|
@@ -213,23 +199,13 @@ def generate(text_list, image_list, max_new_tokens):
|
|
213 |
else:
|
214 |
raise ValueError
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
for _ in range(patch_length - 1):
|
224 |
-
image_tokens += BOP_TOKEN + ''.join(
|
225 |
-
IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
|
226 |
-
image_tokens += BOI_TOKEN + ''.join(
|
227 |
-
IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN
|
228 |
-
image_tokens_list.append(image_tokens)
|
229 |
-
else:
|
230 |
-
pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
|
231 |
-
|
232 |
-
image_embeds = service.visual_encoder(pixel_values)
|
233 |
image_embeds = image_embeds.to(service.llm_device)
|
234 |
|
235 |
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
|
@@ -241,10 +217,21 @@ def generate(text_list, image_list, max_new_tokens):
|
|
241 |
embeds_cmp_mask = None
|
242 |
embeds_gen_mask = None
|
243 |
|
|
|
244 |
input_text = image_tokens.join(text_list)
|
245 |
|
246 |
-
print('input_text:', input_text)
|
247 |
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
input_ids = [service.tokenizer.bos_token_id] + input_ids
|
249 |
|
250 |
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
|
@@ -262,7 +249,10 @@ def generate(text_list, image_list, max_new_tokens):
|
|
262 |
ids_gen_mask = ids_gen_mask.unsqueeze(0)
|
263 |
|
264 |
error_msg = []
|
265 |
-
|
|
|
|
|
|
|
266 |
output = service.agent.generate(
|
267 |
tokenizer=service.tokenizer,
|
268 |
input_ids=input_ids,
|
@@ -278,7 +268,6 @@ def generate(text_list, image_list, max_new_tokens):
|
|
278 |
|
279 |
gen_imgs_base64_list = []
|
280 |
generated_text = output['text']
|
281 |
-
generated_text = generated_text.replace(EOI_TOKEN, IMG_FLAG).replace(service.tokenizer.eos_token, '')
|
282 |
|
283 |
torch.cuda.empty_cache()
|
284 |
|
@@ -294,6 +283,7 @@ def generate(text_list, image_list, max_new_tokens):
|
|
294 |
for img_idx in range(output['num_gen_imgs']):
|
295 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
296 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
|
|
297 |
|
298 |
# a = time.time()
|
299 |
# service.sd_adapter = service.sd_adapter.cpu()
|
@@ -301,19 +291,19 @@ def generate(text_list, image_list, max_new_tokens):
|
|
301 |
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
|
302 |
# print("Loading finished: ", time.time() - a)
|
303 |
|
304 |
-
print(input_text + generated_text)
|
305 |
-
return {'text': generated_text, 'images': gen_imgs_base64_list, 'error_msg': error_msg}
|
306 |
|
307 |
|
308 |
-
def http_bot(dialog_state, input_state, max_new_tokens,
|
309 |
request: gr.Request):
|
310 |
print('input_state:', input_state)
|
311 |
-
|
312 |
-
if len(dialog_state.messages) == 0 or
|
313 |
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
|
314 |
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
|
315 |
|
316 |
-
if len(dialog_state.messages)
|
317 |
output_state = init_input_state()
|
318 |
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
|
319 |
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
|
@@ -322,22 +312,40 @@ def http_bot(dialog_state, input_state, max_new_tokens, max_turns,
|
|
322 |
|
323 |
prompt = dialog_state.get_prompt()
|
324 |
text = prompt['text']
|
|
|
325 |
max_new_tokens = int(max_new_tokens)
|
326 |
images = prompt['images']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
-
results = generate(text, images, max_new_tokens)
|
329 |
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
|
330 |
|
331 |
output_state = init_input_state()
|
332 |
image_dir = get_conv_image_dir()
|
333 |
output_state['text'] = results['text']
|
|
|
334 |
|
335 |
for image_base64 in results['images']:
|
336 |
if image_base64 == '':
|
337 |
image_path = ''
|
338 |
else:
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
341 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
342 |
if not os.path.exists(image_path):
|
343 |
image.save(image_path)
|
@@ -354,8 +362,8 @@ def http_bot(dialog_state, input_state, max_new_tokens, max_turns,
|
|
354 |
IMG_FLAG = '<image>'
|
355 |
LOGDIR = 'log'
|
356 |
|
357 |
-
logger = build_logger("
|
358 |
-
headers = {"User-Agent": "SEED-
|
359 |
|
360 |
no_change_btn = gr.Button()
|
361 |
enable_btn = gr.Button(interactive=True)
|
@@ -436,10 +444,16 @@ def center_crop_image(image, max_aspect_ratio=1.5):
|
|
436 |
|
437 |
def vote_last_response(state, vote_type, request: gr.Request):
|
438 |
with open(get_conv_log_filename(), "a") as fout:
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
data = {
|
440 |
"tstamp": round(time.time(), 4),
|
441 |
"type": vote_type,
|
442 |
-
"state":
|
443 |
"ip": request.client.host,
|
444 |
}
|
445 |
fout.write(json.dumps(data) + "\n")
|
@@ -475,7 +489,7 @@ def clear_history(request: gr.Request):
|
|
475 |
|
476 |
|
477 |
def init_input_state():
|
478 |
-
return {'images': [], 'text': ''}
|
479 |
|
480 |
|
481 |
def add_text(dialog_state, input_state, text, request: gr.Request):
|
@@ -509,13 +523,17 @@ def add_image(dialog_state, input_state, image, request: gr.Request):
|
|
509 |
|
510 |
print('image size:', image.size)
|
511 |
|
512 |
-
image = center_crop_image(image, max_aspect_ratio=10)
|
513 |
|
514 |
image_dir = get_conv_image_dir()
|
515 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
516 |
if not os.path.exists(image_path):
|
517 |
image.save(image_path)
|
518 |
input_state['images'].append(image_path)
|
|
|
|
|
|
|
|
|
519 |
input_state['text'] += IMG_FLAG
|
520 |
|
521 |
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
|
@@ -548,14 +566,13 @@ title = ("""
|
|
548 |
# SEED-Story
|
549 |
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)
|
550 |
|
551 |
-
Demo of
|
552 |
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.
|
553 |
|
554 |
## Tips:
|
555 |
* Check out the conversation examples (at the bottom) for inspiration.
|
556 |
-
*
|
557 |
-
*
|
558 |
-
|
559 |
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
|
560 |
""")
|
561 |
|
@@ -577,7 +594,7 @@ img:before {
|
|
577 |
position: absolute;
|
578 |
top: -10px;
|
579 |
left: 0;
|
580 |
-
height:
|
581 |
width: 100%;
|
582 |
background-color: rgb(230, 230, 230);
|
583 |
border: 2px dotted rgb(200, 200, 200);
|
@@ -601,29 +618,10 @@ img:after {
|
|
601 |
|
602 |
if __name__ == '__main__':
|
603 |
examples_mix = [
|
604 |
-
['https://github.com/
|
605 |
-
'
|
606 |
-
['https://github.com/
|
607 |
-
'
|
608 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/arrow.jpg?raw=true',
|
609 |
-
'What is the object pointed by the red arrow?'],
|
610 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/shanghai.png?raw=true',
|
611 |
-
'Where was this image taken? Explain your answer.'],
|
612 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/GPT4.png?raw=true',
|
613 |
-
'How long does it take to make GPT-4 safer?'],
|
614 |
-
['https://github.com/AILab-CVC/SEED-X/blob/main/demos/twitter.png?raw=true',
|
615 |
-
'Please provide a comprehensive description of this image.'],
|
616 |
-
]
|
617 |
-
examples_text = [
|
618 |
-
['I want to build a two story cabin in the woods, with many commanding windows. Can you show me a picture?'],
|
619 |
-
['Use your imagination to design a concept image for Artificial General Intelligence (AGI). Show me an image.'],
|
620 |
-
[
|
621 |
-
'Can you design an illustration for βThe Three-Body Problemβ to depict a scene from the novel? Show me a picture.'],
|
622 |
-
[
|
623 |
-
'My four year old son loves toy trains. Can you design a fancy birthday cake for him? Please generate a picture.'],
|
624 |
-
[
|
625 |
-
'Generate an image of a portrait of young nordic girl, age 25, freckled skin, neck tatoo, blue eyes 35mm lens, photography, ultra details.'],
|
626 |
-
['Generate an impressionist painting of an astronaut in a jungle.']
|
627 |
]
|
628 |
with gr.Blocks(css=css) as demo:
|
629 |
gr.Markdown(title)
|
@@ -640,10 +638,10 @@ if __name__ == '__main__':
|
|
640 |
elem_id='textbox',
|
641 |
placeholder="Enter text and image, and press submit,", container=False)
|
642 |
with gr.Row():
|
643 |
-
add_image_btn = gr.Button("Add Image")
|
644 |
-
add_text_btn = gr.Button("Add Text")
|
645 |
-
|
646 |
submit_btn = gr.Button("Submit")
|
|
|
647 |
|
648 |
with gr.Row():
|
649 |
max_new_tokens = gr.Slider(minimum=64,
|
@@ -652,14 +650,11 @@ if __name__ == '__main__':
|
|
652 |
step=64,
|
653 |
interactive=True,
|
654 |
label="Max Output Tokens")
|
655 |
-
|
656 |
-
label="Max
|
657 |
-
force_img_gen = gr.Radio(choices=[True, False], value=False, label='Force Image Generation')
|
658 |
-
force_bbox = gr.Radio(choices=[True, False], value=False, label='Force Bounding Box')
|
659 |
-
force_polish = gr.Radio(choices=[True, False], value=True, label='Force Polishing Generated Image')
|
660 |
|
661 |
with gr.Column(scale=7):
|
662 |
-
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-
|
663 |
with gr.Row():
|
664 |
upvote_btn = gr.Button(value="π Upvote", interactive=False)
|
665 |
downvote_btn = gr.Button(value="π Downvote", interactive=False)
|
@@ -667,10 +662,8 @@ if __name__ == '__main__':
|
|
667 |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
|
668 |
|
669 |
with gr.Row():
|
670 |
-
with gr.Column(scale=0
|
671 |
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
|
672 |
-
with gr.Column(scale=0.3):
|
673 |
-
gr.Examples(examples=examples_text, label='Input examples', inputs=[text], cache_examples=False)
|
674 |
|
675 |
# Register listeners
|
676 |
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
|
@@ -678,20 +671,25 @@ if __name__ == '__main__':
|
|
678 |
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
|
679 |
|
680 |
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
|
681 |
-
http_bot, [dialog_state, input_state, max_new_tokens,
|
682 |
[dialog_state, input_state, chatbot] + btn_list)
|
683 |
-
add_image_btn.click(add_image, [dialog_state, input_state, image],
|
684 |
-
|
685 |
-
|
686 |
-
add_text_btn.click(add_text, [dialog_state, input_state, text],
|
687 |
-
|
688 |
|
689 |
submit_btn.click(
|
690 |
-
add_image, [dialog_state, input_state, image], [dialog_state, input_state, image, chatbot] + btn_list).then(
|
691 |
add_text, [dialog_state, input_state, text],
|
692 |
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
http_bot,
|
694 |
-
[dialog_state, input_state, max_new_tokens,
|
695 |
[dialog_state, input_state, chatbot] + btn_list)
|
696 |
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
|
697 |
|
|
|
37 |
IMG_FLAG = '<image>'
|
38 |
num_img_in_tokens = 64
|
39 |
num_img_out_tokens = 64
|
40 |
+
instruction_prompt = '{instruction}'
|
41 |
|
42 |
resolution_grids = ['1x1', '1x2', '1x3', '1x4', '1x5', '1x6', '1x10', '2x1', '3x1', '4x1', '5x1', '6x1', '10x1', '2x2',
|
43 |
'2x3', '3x2', '2x4', '4x2']
|
|
|
120 |
self.agent = hydra.utils.instantiate(agent_cfg, llm=llm)
|
121 |
|
122 |
self.agent.eval().to(self.llm_device, dtype=self.dtype)
|
123 |
+
self.agent.llm.base_model.model.use_kv_cache_head = False
|
124 |
print('Init agent mdoel Done')
|
125 |
|
126 |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.diffusion_path, subfolder="scheduler")
|
|
|
168 |
|
169 |
|
170 |
@spaces.GPU
|
171 |
+
def generate(text_list, image_list, image_embed_list, max_new_tokens):
|
172 |
with torch.no_grad():
|
173 |
+
print('text_list: {}'.format(text_list))
|
174 |
text_list = text_list.split(IMG_FLAG)
|
175 |
+
text_list = [text_list[0]] + ["[INST]"+item for item in text_list[1:-1]] + [text_list[-1]]
|
176 |
top_p = 0.5
|
177 |
+
window_size = 8
|
178 |
assert len(text_list) == len(image_list) + 1
|
179 |
|
180 |
image_tokens = BOI_TOKEN + ''.join(
|
|
|
186 |
embeds_cmp_mask = []
|
187 |
embeds_gen_mask = []
|
188 |
|
|
|
|
|
|
|
|
|
|
|
189 |
for idx, image_item in enumerate(image_list):
|
190 |
if isinstance(image_item, str):
|
191 |
image = decode_image(image_item)
|
192 |
print('after decode image size:', image.size)
|
193 |
input_images.append(image)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
image_tensor = service.image_transform(image)
|
196 |
image_tensor_list.append(image_tensor)
|
197 |
embeds_cmp_mask.append(True)
|
|
|
199 |
else:
|
200 |
raise ValueError
|
201 |
|
202 |
+
# pixel_values = torch.stack(image_tensor_list).to(service.vit_sd_device, dtype=service.dtype)
|
203 |
+
#
|
204 |
+
# image_embeds = service.visual_encoder(pixel_values)
|
205 |
+
# image_embeds = image_embeds.to(service.llm_device)
|
206 |
+
print(image_embed_list)
|
207 |
+
image_embed_list = [t.squeeze(0) for t in image_embed_list]
|
208 |
+
image_embeds = torch.stack(image_embed_list, dim=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
image_embeds = image_embeds.to(service.llm_device)
|
210 |
|
211 |
embeds_cmp_mask = torch.tensor(embeds_cmp_mask, dtype=torch.bool).to(service.llm_device)
|
|
|
217 |
embeds_cmp_mask = None
|
218 |
embeds_gen_mask = None
|
219 |
|
220 |
+
|
221 |
input_text = image_tokens.join(text_list)
|
222 |
|
223 |
+
print('input_text fed to LLM:', input_text)
|
224 |
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
225 |
+
|
226 |
+
while image_embeds.shape[0] > window_size:
|
227 |
+
eoi_prompt_idx = input_text.index(EOI_TOKEN)
|
228 |
+
input_text = input_text[eoi_prompt_idx + len(EOI_TOKEN) + len('[INST]'):]
|
229 |
+
image_embeds = image_embeds[1:]
|
230 |
+
input_ids = service.tokenizer.encode(input_text, add_special_tokens=False)
|
231 |
+
|
232 |
+
if image_embeds is not None:
|
233 |
+
embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(service.llm_device, dtype=torch.bool)
|
234 |
+
|
235 |
input_ids = [service.tokenizer.bos_token_id] + input_ids
|
236 |
|
237 |
input_ids = torch.tensor(input_ids).to(service.llm_device, dtype=torch.long)
|
|
|
249 |
ids_gen_mask = ids_gen_mask.unsqueeze(0)
|
250 |
|
251 |
error_msg = []
|
252 |
+
print('image_embeds_shape: ' + str(image_embeds.shape))
|
253 |
+
print('image_embeds: {}'.format(image_embeds))
|
254 |
+
print('input_ids: ' + str(input_ids))
|
255 |
+
print('ids_cmp_mask: ' + str(ids_cmp_mask))
|
256 |
output = service.agent.generate(
|
257 |
tokenizer=service.tokenizer,
|
258 |
input_ids=input_ids,
|
|
|
268 |
|
269 |
gen_imgs_base64_list = []
|
270 |
generated_text = output['text']
|
|
|
271 |
|
272 |
torch.cuda.empty_cache()
|
273 |
|
|
|
283 |
for img_idx in range(output['num_gen_imgs']):
|
284 |
img_feat = img_gen_feat[img_idx:img_idx + 1]
|
285 |
generated_image = service.sd_adapter.generate(image_embeds=img_feat, num_inference_steps=50)[0]
|
286 |
+
gen_imgs_base64_list.append(generated_image)
|
287 |
|
288 |
# a = time.time()
|
289 |
# service.sd_adapter = service.sd_adapter.cpu()
|
|
|
291 |
# service.agent = service.agent.to(service.vit_sd_device, dtype=service.dtype)
|
292 |
# print("Loading finished: ", time.time() - a)
|
293 |
|
294 |
+
print('[func generate inout+output]: {}'.format(input_text + generated_text))
|
295 |
+
return {'text': generated_text, 'images': gen_imgs_base64_list, 'image_embeds': img_feat.detach().clone(), 'error_msg': error_msg}
|
296 |
|
297 |
|
298 |
+
def http_bot(dialog_state, input_state, max_new_tokens, max_length,
|
299 |
request: gr.Request):
|
300 |
print('input_state:', input_state)
|
301 |
+
print(dialog_state.messages)
|
302 |
+
if len(dialog_state.messages) == 0 or len(
|
303 |
dialog_state.messages[-1]['message']['text'].strip(' ?.;!/')) == 0:
|
304 |
return (dialog_state, input_state, dialog_state.to_gradio_chatbot()) + (no_change_btn,) * 4
|
305 |
|
306 |
+
if len(dialog_state.messages) >= max_length:
|
307 |
output_state = init_input_state()
|
308 |
output_state['text'] = 'Error: History exceeds maximum rounds, please clear history and restart.'
|
309 |
dialog_state.messages.append({'role': dialog_state.roles[1], 'message': output_state})
|
|
|
312 |
|
313 |
prompt = dialog_state.get_prompt()
|
314 |
text = prompt['text']
|
315 |
+
print('text from http_bot: {}'.format(text))
|
316 |
max_new_tokens = int(max_new_tokens)
|
317 |
images = prompt['images']
|
318 |
+
image_embeds = prompt['image_embeds']
|
319 |
+
|
320 |
+
results = generate(text, images, image_embeds, max_new_tokens)
|
321 |
+
generated_text = results['text']
|
322 |
+
pattern = r' <img_000\d{2}>'
|
323 |
+
# Replace all occurrences of the pattern with the replacement text
|
324 |
+
generated_text = re.sub(pattern, '', generated_text)
|
325 |
+
|
326 |
+
generated_text = generated_text.replace(' '+service.tokenizer.eos_token, '')\
|
327 |
+
.replace('[INST]', '').replace(' '+BOI_TOKEN, '').replace(' '+EOI_TOKEN, IMG_FLAG)
|
328 |
+
|
329 |
+
results['text'] = generated_text
|
330 |
|
|
|
331 |
print('response: ', {'text': results['text'], 'error_msg': results['error_msg']})
|
332 |
|
333 |
output_state = init_input_state()
|
334 |
image_dir = get_conv_image_dir()
|
335 |
output_state['text'] = results['text']
|
336 |
+
output_state['image_embeds'].append(results['image_embeds'])
|
337 |
|
338 |
for image_base64 in results['images']:
|
339 |
if image_base64 == '':
|
340 |
image_path = ''
|
341 |
else:
|
342 |
+
if isinstance(image_base64, Image.Image):
|
343 |
+
print('generated image is in Image.Image')
|
344 |
+
image = image_base64
|
345 |
+
else:
|
346 |
+
print('generated image is in Image_base64')
|
347 |
+
image = decode_image(image_base64)
|
348 |
+
image = image.convert('RGB')
|
349 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
350 |
if not os.path.exists(image_path):
|
351 |
image.save(image_path)
|
|
|
362 |
IMG_FLAG = '<image>'
|
363 |
LOGDIR = 'log'
|
364 |
|
365 |
+
logger = build_logger("gradio_seed_story", LOGDIR)
|
366 |
+
headers = {"User-Agent": "SEED-Story Client"}
|
367 |
|
368 |
no_change_btn = gr.Button()
|
369 |
enable_btn = gr.Button(interactive=True)
|
|
|
444 |
|
445 |
def vote_last_response(state, vote_type, request: gr.Request):
|
446 |
with open(get_conv_log_filename(), "a") as fout:
|
447 |
+
print(state)
|
448 |
+
print(state.dict())
|
449 |
+
dic = state.dict()
|
450 |
+
for i in range(len(dic['messages'])):
|
451 |
+
dic['messages'][i]['message'].pop('image_embeds')
|
452 |
+
print(dic)
|
453 |
data = {
|
454 |
"tstamp": round(time.time(), 4),
|
455 |
"type": vote_type,
|
456 |
+
"state": dic,
|
457 |
"ip": request.client.host,
|
458 |
}
|
459 |
fout.write(json.dumps(data) + "\n")
|
|
|
489 |
|
490 |
|
491 |
def init_input_state():
|
492 |
+
return {'images': [], 'text': '', 'image_embeds': []}
|
493 |
|
494 |
|
495 |
def add_text(dialog_state, input_state, text, request: gr.Request):
|
|
|
523 |
|
524 |
print('image size:', image.size)
|
525 |
|
526 |
+
# image = center_crop_image(image, max_aspect_ratio=10)
|
527 |
|
528 |
image_dir = get_conv_image_dir()
|
529 |
image_path = get_image_name(image=image, image_dir=image_dir)
|
530 |
if not os.path.exists(image_path):
|
531 |
image.save(image_path)
|
532 |
input_state['images'].append(image_path)
|
533 |
+
image_tensor = service.image_transform(image).unsqueeze(0).to(service.llm_device, dtype=service.dtype)
|
534 |
+
image_embeds = service.visual_encoder(image_tensor).detach().clone()
|
535 |
+
image_embeds = image_embeds.to(service.llm_device)
|
536 |
+
input_state['image_embeds'].append(image_embeds)
|
537 |
input_state['text'] += IMG_FLAG
|
538 |
|
539 |
if len(dialog_state.messages) > 0 and dialog_state.messages[-1]['role'] == dialog_state.roles[0]:
|
|
|
566 |
# SEED-Story
|
567 |
[[Paper]](https://arxiv.org/abs/2407.08683) [[Code]](https://github.com/TencentARC/SEED-Story)
|
568 |
|
569 |
+
Demo of the multimodal story generation model SEED-Story-George. It is trained on StoryStream-Curious George subset.
|
570 |
SEED-Story is a MLLM capable of generating multimodal long stories consisting of rich and coherent narrative texts, along with images that are consistent in characters and style.
|
571 |
|
572 |
## Tips:
|
573 |
* Check out the conversation examples (at the bottom) for inspiration.
|
574 |
+
* Our demo requires a mix of an image and a starting sentence as input. You can freely upload an image or enter text, and then click on "Submit". Then, The model generates the next story image and text.
|
575 |
+
* You can click on "Continue Generation" to make the model generate a next story image and text based on all previous story boards.
|
|
|
576 |
* SEED-Story was trained with English-only data. It may process with other languages due to the inherent capabilities from LLaMA, but might not stable.
|
577 |
""")
|
578 |
|
|
|
594 |
position: absolute;
|
595 |
top: -10px;
|
596 |
left: 0;
|
597 |
+
height: auto;
|
598 |
width: 100%;
|
599 |
background-color: rgb(230, 230, 230);
|
600 |
border: 2px dotted rgb(200, 200, 200);
|
|
|
618 |
|
619 |
if __name__ == '__main__':
|
620 |
examples_mix = [
|
621 |
+
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/2.jpg?raw=true',
|
622 |
+
'One day, George, the curious brown monkey, decided to explore a new room. He peeked out from behind a dresser, looking both curious and cautious. The dresser had three drawers, each with a round handle. An electrical outlet was visible on the wall.'],
|
623 |
+
['https://github.com/TencentARC/SEED-Story/blob/master/assets/demo_examples/4.jpg?raw=true',
|
624 |
+
'In the bustling city, a beautiful blue and yellow bird took flight, soaring high above the buildings. Among the clouds, a heart-shaped formation appeared, as if nature was sending a love note to the world below. Other birds joined, their silhouettes dancing in the distance.'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
625 |
]
|
626 |
with gr.Blocks(css=css) as demo:
|
627 |
gr.Markdown(title)
|
|
|
638 |
elem_id='textbox',
|
639 |
placeholder="Enter text and image, and press submit,", container=False)
|
640 |
with gr.Row():
|
641 |
+
# add_image_btn = gr.Button("Add Image")
|
642 |
+
# add_text_btn = gr.Button("Add Text")
|
|
|
643 |
submit_btn = gr.Button("Submit")
|
644 |
+
continue_btn = gr.Button("Continue Generation")
|
645 |
|
646 |
with gr.Row():
|
647 |
max_new_tokens = gr.Slider(minimum=64,
|
|
|
650 |
step=64,
|
651 |
interactive=True,
|
652 |
label="Max Output Tokens")
|
653 |
+
max_length = gr.Slider(minimum=1, maximum=30, value=10, step=1, interactive=True,
|
654 |
+
label="Max Story Length")
|
|
|
|
|
|
|
655 |
|
656 |
with gr.Column(scale=7):
|
657 |
+
chatbot = gr.Chatbot(elem_id='chatbot', label="SEED-Story", height=700)
|
658 |
with gr.Row():
|
659 |
upvote_btn = gr.Button(value="π Upvote", interactive=False)
|
660 |
downvote_btn = gr.Button(value="π Downvote", interactive=False)
|
|
|
662 |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False)
|
663 |
|
664 |
with gr.Row():
|
665 |
+
with gr.Column(scale=1.0):
|
666 |
gr.Examples(examples=examples_mix, label='Input examples', inputs=[image, text], cache_examples=False)
|
|
|
|
|
667 |
|
668 |
# Register listeners
|
669 |
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn]
|
|
|
671 |
downvote_btn.click(downvote_last_response, [dialog_state], [upvote_btn, downvote_btn])
|
672 |
|
673 |
regenerate_btn.click(regenerate, [dialog_state], [dialog_state, chatbot] + btn_list).then(
|
674 |
+
http_bot, [dialog_state, input_state, max_new_tokens, max_length],
|
675 |
[dialog_state, input_state, chatbot] + btn_list)
|
676 |
+
# add_image_btn.click(add_image, [dialog_state, input_state, image],
|
677 |
+
# [dialog_state, input_state, image, chatbot] + btn_list)
|
678 |
+
#
|
679 |
+
# add_text_btn.click(add_text, [dialog_state, input_state, text],
|
680 |
+
# [dialog_state, input_state, text, chatbot] + btn_list)
|
681 |
|
682 |
submit_btn.click(
|
|
|
683 |
add_text, [dialog_state, input_state, text],
|
684 |
[dialog_state, input_state, text, chatbot, upvote_btn, downvote_btn, regenerate_btn, clear_btn]).then(
|
685 |
+
add_image, [dialog_state, input_state, image],
|
686 |
+
[dialog_state, input_state, image, chatbot] + btn_list).then(
|
687 |
+
http_bot,
|
688 |
+
[dialog_state, input_state, max_new_tokens, max_length],
|
689 |
+
[dialog_state, input_state, chatbot] + btn_list)
|
690 |
+
continue_btn.click(
|
691 |
http_bot,
|
692 |
+
[dialog_state, input_state, max_new_tokens, max_length],
|
693 |
[dialog_state, input_state, chatbot] + btn_list)
|
694 |
clear_btn.click(clear_history, None, [dialog_state, input_state, chatbot] + btn_list)
|
695 |
|
configs/visual_tokenizer/qwen_vitg_448.yaml
CHANGED
@@ -7,4 +7,4 @@ mlp_ratio: 4.9231
|
|
7 |
output_dim: 4096
|
8 |
patch_size: 14
|
9 |
width: 1664
|
10 |
-
pretrained_model_path:
|
|
|
7 |
output_dim: 4096
|
8 |
patch_size: 14
|
9 |
width: 1664
|
10 |
+
pretrained_model_path: pretrained/qwen_vit_G.pt
|
conversation.py
CHANGED
@@ -49,7 +49,8 @@ class Conversation:
|
|
49 |
skip_next: bool = False
|
50 |
|
51 |
def get_prompt(self):
|
52 |
-
messages =
|
|
|
53 |
if self.sep_style == SeparatorStyle.SINGLE:
|
54 |
if self.system is None or self.system == '':
|
55 |
text = ''
|
@@ -65,28 +66,28 @@ class Conversation:
|
|
65 |
|
66 |
text += self.roles[1] + ":"
|
67 |
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
68 |
-
b_token = "[INST] "
|
69 |
-
e_token = " [/INST]"
|
70 |
if self.system is None or self.system == '':
|
71 |
text = ''
|
72 |
else:
|
73 |
text = f"<<SYS>>\n{self.system}\n<</SYS>>\n\n"
|
74 |
images = []
|
|
|
75 |
for idx, message in enumerate(messages):
|
76 |
-
|
77 |
-
if idx % 2 == 0:
|
78 |
-
text += b_token + message['message']['text'] + e_token + self.sep
|
79 |
-
else:
|
80 |
-
text += message['message']['text'] + self.sep
|
81 |
|
82 |
for image_path in message['message']['images']:
|
83 |
-
image = Image.open(image_path)
|
84 |
image_base64 = encode_image(image)
|
85 |
images.append(image_base64)
|
|
|
|
|
|
|
86 |
else:
|
87 |
raise NotImplementedError
|
88 |
|
89 |
-
return {'text': text, 'images': images}
|
90 |
|
91 |
# def update_image_ids(self, images_ids):
|
92 |
# image_count = 0
|
@@ -106,6 +107,7 @@ class Conversation:
|
|
106 |
for i, single_turn in enumerate(self.messages[self.offset:]):
|
107 |
single_turn = single_turn['message']
|
108 |
text_list = single_turn['text'].split(IMG_FLAG)
|
|
|
109 |
assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images']))
|
110 |
message = ''
|
111 |
for image_idx in range(len(single_turn['images'])):
|
|
|
49 |
skip_next: bool = False
|
50 |
|
51 |
def get_prompt(self):
|
52 |
+
messages = self.messages
|
53 |
+
# messages = copy.deepcopy(self.messages)
|
54 |
if self.sep_style == SeparatorStyle.SINGLE:
|
55 |
if self.system is None or self.system == '':
|
56 |
text = ''
|
|
|
66 |
|
67 |
text += self.roles[1] + ":"
|
68 |
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
69 |
+
# b_token = "[INST] "
|
70 |
+
# e_token = " [/INST]"
|
71 |
if self.system is None or self.system == '':
|
72 |
text = ''
|
73 |
else:
|
74 |
text = f"<<SYS>>\n{self.system}\n<</SYS>>\n\n"
|
75 |
images = []
|
76 |
+
image_embeds = []
|
77 |
for idx, message in enumerate(messages):
|
78 |
+
text += message['message']['text']
|
|
|
|
|
|
|
|
|
79 |
|
80 |
for image_path in message['message']['images']:
|
81 |
+
image = Image.open(image_path).convert('RGB')
|
82 |
image_base64 = encode_image(image)
|
83 |
images.append(image_base64)
|
84 |
+
image_embeds.extend(message['message']['image_embeds'])
|
85 |
+
|
86 |
+
|
87 |
else:
|
88 |
raise NotImplementedError
|
89 |
|
90 |
+
return {'text': text, 'images': images, 'image_embeds': image_embeds}
|
91 |
|
92 |
# def update_image_ids(self, images_ids):
|
93 |
# image_count = 0
|
|
|
107 |
for i, single_turn in enumerate(self.messages[self.offset:]):
|
108 |
single_turn = single_turn['message']
|
109 |
text_list = single_turn['text'].split(IMG_FLAG)
|
110 |
+
print(text_list, len(single_turn['images']))
|
111 |
assert len(text_list) == len(single_turn['images']) + 1, print(text_list, len(single_turn['images']))
|
112 |
message = ''
|
113 |
for image_idx in range(len(single_turn['images'])):
|
pretrained/seed_story/george_sft/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14709979626
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7e46794a2aab38f3f59484a4f4bb4c839217ef17c4329977b0a11839f462b94
|
3 |
size 14709979626
|