Spaces:
Sleeping
Sleeping
import numpy as np | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def vis_camera(RT_list, rescale_T=1): | |
fig = go.Figure() | |
showticklabels = True | |
visible = True | |
scene_bounds = 2 | |
base_radius = 2.5 | |
zoom_scale = 1.5 | |
fov_deg = 50.0 | |
edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)] | |
colors = px.colors.qualitative.Plotly | |
cone_list = [] | |
n = len(RT_list) | |
for i, RT in enumerate(RT_list): | |
R = RT[:,:3] | |
T = RT[:,-1]/rescale_T | |
cone = calc_cam_cone_pts_3d(R, T, fov_deg) | |
cone_list.append((cone, (i*1/n, "green"), f"view_{i}")) | |
for (cone, clr, legend) in cone_list: | |
for (i, edge) in enumerate(edges): | |
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0]) | |
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1]) | |
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2]) | |
fig.add_trace(go.Scatter3d( | |
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines', | |
line=dict(color=clr, width=3), | |
name=legend, showlegend=(i == 0))) | |
fig.update_layout( | |
height=500, | |
autosize=True, | |
# hovermode=False, | |
margin=go.layout.Margin(l=0, r=0, b=0, t=0), | |
showlegend=True, | |
legend=dict( | |
yanchor='bottom', | |
y=0.01, | |
xanchor='right', | |
x=0.99, | |
), | |
scene=dict( | |
aspectmode='manual', | |
aspectratio=dict(x=1, y=1, z=1.0), | |
camera=dict( | |
center=dict(x=0.0, y=0.0, z=0.0), | |
up=dict(x=0.0, y=-1.0, z=0.0), | |
eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2), | |
), | |
xaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=showticklabels, | |
visible=visible, | |
), | |
yaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=showticklabels, | |
visible=visible, | |
), | |
zaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=showticklabels, | |
visible=visible, | |
) | |
)) | |
return fig | |
def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None): | |
fov_rad = np.deg2rad(fov_deg) | |
R_W2C_inv = np.linalg.inv(R_W2C) | |
# Camera pose center: | |
T = np.zeros_like(T_W2C) - T_W2C | |
T = np.dot(R_W2C_inv, T) | |
cam_x = T[0] | |
cam_y = T[1] | |
cam_z = T[2] | |
if set_canonical: | |
T = np.zeros_like(T_W2C) | |
T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1] | |
T = T - T_W2C | |
T = np.dot(R_W2C_inv, T) | |
cam_x = T[0] | |
cam_y = T[1] | |
cam_z = T[2] | |
# vertex | |
corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale | |
corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale | |
corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale | |
corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale | |
corn1 = corn1 - T_W2C | |
corn2 = corn2 - T_W2C | |
corn3 = corn3 - T_W2C | |
corn4 = corn4 - T_W2C | |
corn1 = np.dot(R_W2C_inv, corn1) | |
corn2 = np.dot(R_W2C_inv, corn2) | |
corn3 = np.dot(R_W2C_inv, corn3) | |
corn4 = np.dot(R_W2C_inv, corn4) | |
# Now attach as offset to actual 3D camera position: | |
corn_x1 = corn1[0] | |
corn_y1 = corn1[1] | |
corn_z1 = corn1[2] | |
corn_x2 = corn2[0] | |
corn_y2 = corn2[1] | |
corn_z2 = corn2[2] | |
corn_x3 = corn3[0] | |
corn_y3 = corn3[1] | |
corn_z3 = corn3[2] | |
corn_x4 = corn4[0] | |
corn_y4 = corn4[1] | |
corn_z4 = corn4[2] | |
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ] | |
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ] | |
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ] | |
return np.array([xs, ys, zs]).T | |
# T_base = [ | |
# [1.,0.,0.], ## W2C x 的正方向: 相机朝左 left | |
# [-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right | |
# [0., 1., 0.], ## W2C y 的正方向: 相机朝上 up | |
# [0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down | |
# [0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out | |
# [0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in | |
# ] | |
# radius = 1 | |
# n = 16 | |
# # step = | |
# look_at = np.array([0, 0, 0.8]).reshape(3,1) | |
# # look_at = np.array([0, 0, 0.2]).reshape(3,1) | |
# T_list = [] | |
# base_R = np.array([[1., 0., 0.], | |
# [0., 1., 0.], | |
# [0., 0., 1.]]) | |
# res = [] | |
# res_forsave = [] | |
# T_range = 1.8 | |
# for i in range(0, 16): | |
# # theta = (1)*np.pi*i/n | |
# R = base_R[:,:3] | |
# T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2 | |
# RT = np.concatenate([R,T], axis=1) | |
# res.append(RT) | |
# fig = vis_camera(res) | |