Spaces:
Sleeping
Sleeping
import datetime, time | |
import os, sys, argparse | |
import math | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange, repeat | |
from fire import Fire | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from torchvision.transforms import ToTensor | |
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
from sgm.util import default, instantiate_from_config | |
def sample( | |
input_path: str = "outputs/inputs/test_image.png", # Can either be image file or folder with image files | |
ckpt: str = "checkpoints/svd.safetensors", | |
num_frames: Optional[int] = None, | |
num_steps: Optional[int] = None, | |
version: str = "svd", | |
fps_id: int = 6, | |
motion_bucket_id: int = 127, | |
cond_aug: float = 0.02, | |
seed: int = 23, | |
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
device: str = "cuda", | |
output_folder: Optional[str] = None, | |
save_fps: int = 10, | |
resize: Optional[bool] = False, | |
): | |
""" | |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each | |
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. | |
""" | |
if version == "svd": | |
num_frames = default(num_frames, 14) | |
num_steps = default(num_steps, 25) | |
output_folder = default(output_folder, "outputs/svd/") | |
model_config = "scripts/sampling/configs/svd.yaml" | |
elif version == "svd_xt": | |
num_frames = default(num_frames, 25) | |
num_steps = default(num_steps, 30) | |
output_folder = default(output_folder, "outputs/svd_xt/") | |
model_config = "scripts/sampling/configs/svd_xt.yaml" | |
elif version == "svd_image_decoder": | |
num_frames = default(num_frames, 14) | |
num_steps = default(num_steps, 25) | |
output_folder = default( | |
output_folder, "outputs/svd_image_decoder/" | |
) | |
model_config = "scripts/sampling/configs/svd_image_decoder.yaml" | |
elif version == "svd_xt_image_decoder": | |
num_frames = default(num_frames, 25) | |
num_steps = default(num_steps, 30) | |
output_folder = default( | |
output_folder, "outputs/svd_xt_image_decoder/" | |
) | |
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml" | |
else: | |
raise ValueError(f"Version {version} does not exist.") | |
model, filter = load_model( | |
model_config, | |
ckpt, | |
device, | |
num_frames, | |
num_steps, | |
) | |
torch.manual_seed(seed) | |
path = Path(input_path) | |
all_img_paths = [] | |
if path.is_file(): | |
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): | |
all_img_paths = [input_path] | |
else: | |
raise ValueError("Path is not valid image file.") | |
elif path.is_dir(): | |
all_img_paths = sorted( | |
[ | |
f | |
for f in path.iterdir() | |
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] | |
] | |
) | |
if len(all_img_paths) == 0: | |
raise ValueError("Folder does not contain any images.") | |
else: | |
raise ValueError | |
print(f'loaded {len(all_img_paths)} images.') | |
os.makedirs(output_folder, exist_ok=True) | |
for no, input_img_path in enumerate(all_img_paths): | |
filepath, fullflname = os.path.split(input_img_path) | |
filename, ext = os.path.splitext(fullflname) | |
print(f'-sample {no+1}: {filename} ...') | |
with Image.open(input_img_path) as image: | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
if resize: | |
image = image.resize((1024,576)) | |
w, h = image.size | |
if h % 64 != 0 or w % 64 != 0: | |
width, height = map(lambda x: x - x % 64, (w, h)) | |
image = image.resize((width, height)) | |
print( | |
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" | |
) | |
image = ToTensor()(image) | |
image = image * 2.0 - 1.0 | |
image = image.unsqueeze(0).to(device) | |
H, W = image.shape[2:] | |
assert image.shape[1] == 3 | |
F = 8 | |
C = 4 | |
shape = (num_frames, C, H // F, W // F) | |
if (H, W) != (576, 1024): | |
print( | |
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." | |
) | |
if motion_bucket_id > 255: | |
print( | |
"WARNING: High motion bucket! This may lead to suboptimal performance." | |
) | |
if fps_id < 5: | |
print("WARNING: Small fps value! This may lead to suboptimal performance.") | |
if fps_id > 30: | |
print("WARNING: Large fps value! This may lead to suboptimal performance.") | |
value_dict = {} | |
value_dict["motion_bucket_id"] = motion_bucket_id | |
value_dict["fps_id"] = fps_id | |
value_dict["cond_aug"] = cond_aug | |
value_dict["cond_frames_without_noise"] = image | |
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) | |
with torch.no_grad(): | |
with torch.autocast(device): | |
batch, batch_uc = get_batch( | |
get_unique_embedder_keys_from_conditioner(model.conditioner), | |
value_dict, | |
[1, num_frames], | |
T=num_frames, | |
device=device, | |
) | |
c, uc = model.conditioner.get_unconditional_conditioning( | |
batch, | |
batch_uc=batch_uc, | |
force_uc_zero_embeddings=[ | |
"cond_frames", | |
"cond_frames_without_noise", | |
], | |
) | |
for k in ["crossattn", "concat"]: | |
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) | |
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) | |
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) | |
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) | |
randn = torch.randn(shape, device=device) | |
additional_model_inputs = {} | |
additional_model_inputs["image_only_indicator"] = torch.zeros( | |
2, num_frames | |
).to(device) | |
#additional_model_inputs["image_only_indicator"][:,0] = 1 | |
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] | |
def denoiser(input, sigma, c): | |
return model.denoiser( | |
model.model, input, sigma, c, **additional_model_inputs | |
) | |
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) | |
model.en_and_decode_n_samples_a_time = decoding_t | |
samples_x = model.decode_first_stage(samples_z) | |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | |
#base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
#video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
video_path = os.path.join(output_folder, f"{filename}.mp4") | |
writer = cv2.VideoWriter( | |
video_path, | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
save_fps, | |
(samples.shape[-1], samples.shape[-2]), | |
) | |
#samples = embed_watermark(samples) | |
#samples = filter(samples) | |
vid = ( | |
(rearrange(samples, "t c h w -> t h w c") * 255) | |
.cpu() | |
.numpy() | |
.astype(np.uint8) | |
) | |
for frame in vid: | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
writer.write(frame) | |
writer.release() | |
print(f'Done! results saved in {output_folder}.') | |
def get_unique_embedder_keys_from_conditioner(conditioner): | |
return list(set([x.input_key for x in conditioner.embedders])) | |
def get_batch(keys, value_dict, N, T, device): | |
batch = {} | |
batch_uc = {} | |
for key in keys: | |
if key == "fps_id": | |
batch[key] = ( | |
torch.tensor([value_dict["fps_id"]]) | |
.to(device) | |
.repeat(int(math.prod(N))) | |
) | |
elif key == "motion_bucket_id": | |
batch[key] = ( | |
torch.tensor([value_dict["motion_bucket_id"]]) | |
.to(device) | |
.repeat(int(math.prod(N))) | |
) | |
elif key == "cond_aug": | |
batch[key] = repeat( | |
torch.tensor([value_dict["cond_aug"]]).to(device), | |
"1 -> b", | |
b=math.prod(N), | |
) | |
elif key == "cond_frames": | |
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) | |
elif key == "cond_frames_without_noise": | |
batch[key] = repeat( | |
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] | |
) | |
else: | |
batch[key] = value_dict[key] | |
if T is not None: | |
batch["num_video_frames"] = T | |
for key in batch.keys(): | |
if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
batch_uc[key] = torch.clone(batch[key]) | |
return batch, batch_uc | |
def load_model( | |
config: str, | |
ckpt: str, | |
device: str, | |
num_frames: int, | |
num_steps: int, | |
): | |
config = OmegaConf.load(config) | |
config.model.params.ckpt_path = ckpt | |
if device == "cuda": | |
config.model.params.conditioner_config.params.emb_models[ | |
0 | |
].params.open_clip_embedding_config.params.init_device = device | |
config.model.params.sampler_config.params.num_steps = num_steps | |
config.model.params.sampler_config.params.guider_config.params.num_frames = ( | |
num_frames | |
) | |
if device == "cuda": | |
#with torch.device(device): | |
model = instantiate_from_config(config.model).to(device).eval() | |
else: | |
model = instantiate_from_config(config.model).to(device).eval() | |
filter = None #DeepFloydDataFiltering(verbose=False, device=device) | |
return model, filter | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--seed", type=int, default=23, help="seed for seed_everything") | |
parser.add_argument("--ckpt", type=str, default=None, help="checkpoint path") | |
parser.add_argument("--config", type=str, help="config (yaml) path") | |
parser.add_argument("--input", type=str, default=None, help="image path or folder") | |
parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
parser.add_argument("--savefps", type=int, default=10, help="video fps to generate") | |
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
parser.add_argument("--frames", type=int, default=-1, help="frames num to inference") | |
parser.add_argument("--fps", type=int, default=6, help="control the fps") | |
parser.add_argument("--motion", type=int, default=127, help="control the motion magnitude") | |
parser.add_argument("--cond_aug", type=float, default=0.02, help="adding noise to input image") | |
parser.add_argument("--decoding_t", type=int, default=1, help="frames num to decoding per time") | |
parser.add_argument("--resize", action='store_true', default=False, help="resize all input to default resolution") | |
return parser | |
if __name__ == "__main__": | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
print("@SVD Inference: %s"%now) | |
#Fire(sample) | |
parser = get_parser() | |
args = parser.parse_args() | |
sample(input_path=args.input, ckpt=args.ckpt, num_frames=args.frames, num_steps=args.ddim_steps, \ | |
fps_id=args.fps, motion_bucket_id=args.motion, cond_aug=args.cond_aug, seed=args.seed, \ | |
decoding_t=args.decoding_t, output_folder=args.savedir, save_fps=args.savefps, resize=args.resize) | |