Spaces:
Runtime error
Runtime error
WuChengyue
commited on
Commit
β’
ad41ac1
1
Parent(s):
086c1ca
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import sys
|
4 |
+
import html
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
+
from threading import Thread
|
7 |
+
|
8 |
+
model_name_or_path = 'TencentARC/Mistral_Pro_8B_v0.1'
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path)
|
12 |
+
|
13 |
+
model.half().cuda()
|
14 |
+
|
15 |
+
def convert_message(message):
|
16 |
+
message_text = ""
|
17 |
+
if message["content"] is None and message["role"] == "assistant":
|
18 |
+
message_text += "<|assistant|>\n" # final msg
|
19 |
+
elif message["role"] == "system":
|
20 |
+
message_text += "<|system|>\n" + message["content"].strip() + "\n"
|
21 |
+
elif message["role"] == "user":
|
22 |
+
message_text += "<|user|>\n" + message["content"].strip() + "\n"
|
23 |
+
elif message["role"] == "assistant":
|
24 |
+
message_text += "<|assistant|>\n" + message["content"].strip() + "\n"
|
25 |
+
else:
|
26 |
+
raise ValueError("Invalid role: {}".format(message["role"]))
|
27 |
+
# gradio cleaning - it converts stuff to html entities
|
28 |
+
# we would need special handling for where we want to keep the html...
|
29 |
+
message_text = html.unescape(message_text)
|
30 |
+
# it also converts newlines to <br>, undo this.
|
31 |
+
message_text = message_text.replace("<br>", "\n")
|
32 |
+
return message_text
|
33 |
+
|
34 |
+
def convert_history(chat_history, max_input_length=1024):
|
35 |
+
history_text = ""
|
36 |
+
idx = len(chat_history) - 1
|
37 |
+
# add messages in reverse order until we hit max_input_length
|
38 |
+
while len(tokenizer(history_text).input_ids) < max_input_length and idx >= 0:
|
39 |
+
user_message, chatbot_message = chat_history[idx]
|
40 |
+
user_message = convert_message({"role": "user", "content": user_message})
|
41 |
+
chatbot_message = convert_message({"role": "assistant", "content": chatbot_message})
|
42 |
+
history_text = user_message + chatbot_message + history_text
|
43 |
+
idx = idx - 1
|
44 |
+
# if nothing was added, add <|assistant|> to start generation.
|
45 |
+
if history_text == "":
|
46 |
+
history_text = "<|assistant|>\n"
|
47 |
+
return history_text
|
48 |
+
|
49 |
+
@torch.inference_mode()
|
50 |
+
def instruct(instruction, max_token_output=1024):
|
51 |
+
input_text = instruction
|
52 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
53 |
+
input_ids = tokenizer(input_text, return_tensors='pt', truncation=False)
|
54 |
+
input_ids["input_ids"] = input_ids["input_ids"].cuda()
|
55 |
+
input_ids["attention_mask"] = input_ids["attention_mask"].cuda()
|
56 |
+
generation_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=max_token_output, do_sample=False)
|
57 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
58 |
+
thread.start()
|
59 |
+
return streamer
|
60 |
+
|
61 |
+
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
# chatbot-style model
|
64 |
+
with gr.Tab("Chatbot"):
|
65 |
+
chatbot = gr.Chatbot([], elem_id="chatbot")
|
66 |
+
msg = gr.Textbox()
|
67 |
+
clear = gr.Button("Clear")
|
68 |
+
# fn to add user message to history
|
69 |
+
def user(user_message, history):
|
70 |
+
return "", history + [[user_message, None]]
|
71 |
+
|
72 |
+
def bot(history):
|
73 |
+
prompt = convert_history(history)
|
74 |
+
streaming_out = instruct(prompt)
|
75 |
+
history[-1][1] = ""
|
76 |
+
for new_token in streaming_out:
|
77 |
+
history[-1][1] += new_token
|
78 |
+
yield history
|
79 |
+
|
80 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
81 |
+
bot, chatbot, chatbot
|
82 |
+
)
|
83 |
+
|
84 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
85 |
+
|
86 |
+
if __name__ == "__main__":
|
87 |
+
demo.queue().launch(share=True)
|