Spaces:
Sleeping
Sleeping
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
import os | |
import warnings | |
from contextlib import nullcontext | |
from typing import Optional, Tuple | |
import accelerate | |
import torch | |
from accelerate.hooks import add_hook_to_module, remove_hook_from_module | |
from accelerate.utils import is_npu_available, is_xpu_available | |
from huggingface_hub import file_exists | |
from huggingface_hub.utils import EntryNotFoundError, HFValidationError | |
from packaging import version | |
from safetensors.torch import storage_ptr, storage_size | |
from ..import_utils import is_auto_gptq_available, is_torch_tpu_available | |
from .constants import ( | |
CONFIG_NAME, | |
EMBEDDING_LAYER_NAMES, | |
INCLUDE_LINEAR_LAYERS_SHORTHAND, | |
SAFETENSORS_WEIGHTS_NAME, | |
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING, | |
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING, | |
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING, | |
TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING, | |
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING, | |
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING, | |
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING, | |
WEIGHTS_NAME, | |
bloom_model_postprocess_past_key_value, | |
starcoder_model_postprocess_past_key_value, | |
) | |
mlu_available = False | |
if version.parse(accelerate.__version__) >= version.parse("0.29.0"): | |
from accelerate.utils import is_mlu_available | |
mlu_available = is_mlu_available() | |
__all__ = [ | |
"CONFIG_NAME", | |
"EMBEDDING_LAYER_NAMES", | |
"SAFETENSORS_WEIGHTS_NAME", | |
"TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING", | |
"TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING", | |
"TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING", | |
"TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING", | |
"TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING", | |
"TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING", | |
"TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING", | |
"WEIGHTS_NAME", | |
"INCLUDE_LINEAR_LAYERS_SHORTHAND", | |
"bloom_model_postprocess_past_key_value", | |
"starcoder_model_postprocess_past_key_value", | |
] | |
# Get current device name based on available devices | |
def infer_device() -> str: | |
if torch.cuda.is_available(): | |
return "cuda" | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
return "mps" | |
elif mlu_available: | |
return "mlu" | |
elif is_xpu_available(): | |
return "xpu" | |
elif is_npu_available(): | |
return "npu" | |
return "cpu" | |
def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True, gradient_checkpointing_kwargs=None): | |
r""" | |
Note this method only works for `transformers` models. | |
This method wraps the entire protocol for preparing a model before running a training. This includes: | |
1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm | |
head to fp32 | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The loaded model from `transformers` | |
use_gradient_checkpointing (`bool`, *optional*, defaults to `True`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`): | |
Keyword arguments to pass to the gradient checkpointing function, please refer to the documentation of | |
`torch.utils.checkpoint.checkpoint` for more details about the arguments that you can pass to that method. | |
Note this is only available in the latest transformers versions (> 4.34.1). | |
""" | |
loaded_in_kbit = getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False) | |
is_gptq_quantized = getattr(model, "quantization_method", None) == "gptq" | |
is_aqlm_quantized = getattr(model, "quantization_method", None) == "aqlm" | |
is_eetq_quantized = getattr(model, "quantization_method", None) == "eetq" | |
is_hqq_quantized = getattr(model, "quantization_method", None) == "hqq" or getattr(model, "hqq_quantized", False) | |
if gradient_checkpointing_kwargs is None: | |
gradient_checkpointing_kwargs = {} | |
for name, param in model.named_parameters(): | |
# freeze base model's layers | |
param.requires_grad = False | |
if not is_gptq_quantized and not is_aqlm_quantized and not is_eetq_quantized and not is_hqq_quantized: | |
# cast all non INT8 parameters to fp32 | |
for param in model.parameters(): | |
if ( | |
(param.dtype == torch.float16) or (param.dtype == torch.bfloat16) | |
) and param.__class__.__name__ != "Params4bit": | |
param.data = param.data.to(torch.float32) | |
if ( | |
loaded_in_kbit or is_gptq_quantized or is_aqlm_quantized or is_eetq_quantized or is_hqq_quantized | |
) and use_gradient_checkpointing: | |
# When having `use_reentrant=False` + gradient_checkpointing, there is no need for this hack | |
if "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]: | |
# For backward compatibility | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
# To support older transformers versions, check if the model supports gradient_checkpointing_kwargs | |
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list( | |
inspect.signature(model.gradient_checkpointing_enable).parameters | |
) | |
if not _supports_gc_kwargs and len(gradient_checkpointing_kwargs) > 0: | |
warnings.warn( | |
"gradient_checkpointing_kwargs is not supported in this version of transformers. The passed kwargs will be ignored." | |
" if you want to use that feature, please upgrade to the latest version of transformers.", | |
FutureWarning, | |
) | |
gc_enable_kwargs = ( | |
{} if not _supports_gc_kwargs else {"gradient_checkpointing_kwargs": gradient_checkpointing_kwargs} | |
) | |
# enable gradient checkpointing for memory efficiency | |
model.gradient_checkpointing_enable(**gc_enable_kwargs) | |
return model | |
# copied from transformers.models.bart.modeling_bart | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input ids | |
pad_token_id (`int`): The id of the `padding` token. | |
decoder_start_token_id (`int`): The id of the `start` token. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class ModulesToSaveWrapper(torch.nn.Module): | |
def __init__(self, module_to_save, adapter_name): | |
super().__init__() | |
self.original_module = module_to_save | |
self.modules_to_save = torch.nn.ModuleDict({}) | |
self._active_adapter = adapter_name | |
self._disable_adapters = False | |
self.update(adapter_name) | |
self.check_module() | |
def check_module(self): | |
"""Perform some sanity checks on the module to ensure that it works""" | |
# Try to anticipate some modules that users could try to target that would not work. | |
# Note: It's not possible to check hasattr(module, "forward"), since that returns True for ModuleDict and | |
# ModuleList, even though their forward methods cannot be called | |
forbidden_classes = (torch.nn.ModuleDict, torch.nn.ModuleList, torch.nn.ParameterDict, torch.nn.ParameterList) | |
if isinstance(self.original_module, forbidden_classes): | |
cls_name = self.original_module.__class__.__name__ | |
raise TypeError(f"modules_to_save cannot be applied to modules of type {cls_name}") | |
def disable_adapters(self) -> bool: | |
# use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method | |
return self._disable_adapters | |
def active_adapter(self) -> str: | |
# use a property to ensure that active_adapter is not set directly, instead use the set_adapter method | |
return self._active_adapter | |
def weight(self): | |
if self.active_adapter not in self.modules_to_save: | |
return self.original_module.weight | |
return self.modules_to_save[self.active_adapter].weight | |
def update(self, adapter_name): | |
context_manager = nullcontext() | |
for _, param in self.original_module.named_parameters(): | |
num_params = param.numel() | |
# if using DS Zero 3 and the weights are initialized empty | |
if num_params == 0 and hasattr(param, "ds_numel"): | |
import deepspeed | |
context_manager = deepspeed.zero.GatheredParameters(self.original_module.parameters(), modifier_rank=0) | |
break | |
with context_manager: | |
self.modules_to_save.update(torch.nn.ModuleDict({adapter_name: copy.deepcopy(self.original_module)})) | |
if hasattr(self.modules_to_save[adapter_name], "_hf_hook"): | |
old_hook = self.modules_to_save[adapter_name]._hf_hook | |
new_hook = self._create_new_hook(old_hook) | |
remove_hook_from_module(self.modules_to_save[adapter_name]) | |
add_hook_to_module(self.modules_to_save[adapter_name], new_hook) | |
self.original_module.requires_grad_(False) | |
if adapter_name == self.active_adapter: | |
self.modules_to_save[adapter_name].requires_grad_(True) | |
def _create_new_hook(self, old_hook): | |
r""" | |
Creates a new hook based on the old hook. Use it only if you know what you are doing ! | |
""" | |
old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__) | |
old_hook_attr = old_hook.__dict__ | |
filtered_old_hook_attr = {} | |
old_hook_init_signature = inspect.signature(old_hook_cls.__init__) | |
for k in old_hook_attr.keys(): | |
if k in old_hook_init_signature.parameters: | |
filtered_old_hook_attr[k] = old_hook_attr[k] | |
new_hook = old_hook_cls(**filtered_old_hook_attr) | |
return new_hook | |
def forward(self, *args, **kwargs): | |
if self.disable_adapters or (self.active_adapter not in self.modules_to_save): | |
return self.original_module(*args, **kwargs) | |
return self.modules_to_save[self.active_adapter](*args, **kwargs) | |
def enable_adapters(self, enabled: bool): | |
"""Toggle the enabling and disabling of adapters | |
Takes care of setting the requires_grad flag for the adapter weights. | |
Args: | |
enabled (bool): True to enable adapters, False to disable adapters | |
""" | |
if self._disable_adapters is not enabled: | |
# already in the desired state, do nothing | |
return | |
if enabled: | |
self.original_module.requires_grad_(False) | |
self.modules_to_save[self.active_adapter].requires_grad_(True) | |
self._disable_adapters = False | |
else: | |
self.original_module.requires_grad_(True) | |
self.modules_to_save.requires_grad_(False) | |
self._disable_adapters = True | |
def set_adapter(self, adapter_name: str): | |
"""Set the active adapter | |
Additionally, this function will set the specified adapter to trainable (i.e., requires_grad=True). If this is | |
not desired, use the following code. | |
```py | |
>>> for name, param in model_peft.named_parameters(): | |
... if ...: # some check on name (ex. if 'lora' in name) | |
... param.requires_grad = False | |
``` | |
Args: | |
adapter_name (str): The name of the adapter to set as active | |
""" | |
if adapter_name not in self.modules_to_save: | |
raise ValueError(f"Adapter {adapter_name} not found in {self.modules_to_save.keys()}") | |
self.modules_to_save[self.active_adapter].requires_grad_(False) | |
self.modules_to_save[adapter_name].requires_grad_(True) | |
self._active_adapter = adapter_name | |
def _get_submodules(model, key): | |
parent = model.get_submodule(".".join(key.split(".")[:-1])) | |
target_name = key.split(".")[-1] | |
target = model.get_submodule(key) | |
return parent, target, target_name | |
def _freeze_adapter(model, adapter_name): | |
for n, p in model.named_parameters(): | |
if adapter_name in n: | |
p.requires_grad = False | |
def _set_trainable(model, adapter_name): | |
key_list = [key for key, _ in model.named_modules()] | |
for key in key_list: | |
target_module_found = any(key.endswith(target_key) for target_key in model.modules_to_save) | |
if target_module_found: | |
parent, target, target_name = _get_submodules(model, key) | |
if isinstance(target, ModulesToSaveWrapper): | |
target.update(adapter_name) | |
target.set_adapter(target.active_adapter) | |
else: | |
new_module = ModulesToSaveWrapper(target, adapter_name) | |
new_module.set_adapter(adapter_name) | |
setattr(parent, target_name, new_module) | |
def _set_adapter(model, adapter_name): | |
def check_adapter_name(adapter_name): | |
if isinstance(adapter_name, str): | |
return adapter_name | |
# adapter_name is a list of str | |
if len(adapter_name) > 1: | |
raise ValueError("Only one adapter can be set at a time for modules_to_save") | |
elif len(adapter_name) == 0: | |
raise ValueError("Please specify at least one adapter to set") | |
adapter_name = adapter_name[0] | |
return adapter_name | |
for module in model.modules(): | |
if isinstance(module, ModulesToSaveWrapper): | |
# only check the adapter_name if we actually encounter a ModulesToSaveWrapper, otherwise we don't care | |
adapter_name = check_adapter_name(adapter_name) | |
# if the adapter is found in this module, set it as the active adapter, else disable the adapters of this | |
# module | |
if adapter_name in module.modules_to_save: | |
module.set_adapter(adapter_name) | |
else: | |
module.enable_adapters(False) | |
def _prepare_prompt_learning_config(peft_config, model_config): | |
if peft_config.num_layers is None: | |
if "num_hidden_layers" in model_config: | |
num_layers = model_config["num_hidden_layers"] | |
elif "num_layers" in model_config: | |
num_layers = model_config["num_layers"] | |
elif "n_layer" in model_config: | |
num_layers = model_config["n_layer"] | |
else: | |
raise ValueError("Please specify `num_layers` in `peft_config`") | |
peft_config.num_layers = num_layers | |
if peft_config.token_dim is None: | |
if "hidden_size" in model_config: | |
token_dim = model_config["hidden_size"] | |
elif "n_embd" in model_config: | |
token_dim = model_config["n_embd"] | |
elif "d_model" in model_config: | |
token_dim = model_config["d_model"] | |
else: | |
raise ValueError("Please specify `token_dim` in `peft_config`") | |
peft_config.token_dim = token_dim | |
if peft_config.num_attention_heads is None: | |
if "num_attention_heads" in model_config: | |
num_attention_heads = model_config["num_attention_heads"] | |
elif "n_head" in model_config: | |
num_attention_heads = model_config["n_head"] | |
elif "num_heads" in model_config: | |
num_attention_heads = model_config["num_heads"] | |
elif "encoder_attention_heads" in model_config: | |
num_attention_heads = model_config["encoder_attention_heads"] | |
else: | |
raise ValueError("Please specify `num_attention_heads` in `peft_config`") | |
peft_config.num_attention_heads = num_attention_heads | |
if getattr(peft_config, "encoder_hidden_size", None) is None: | |
setattr(peft_config, "encoder_hidden_size", peft_config.token_dim) | |
return peft_config | |
def fsdp_auto_wrap_policy(model): | |
import functools | |
import os | |
from accelerate import FullyShardedDataParallelPlugin | |
if hasattr(FullyShardedDataParallelPlugin, "get_module_class_from_name"): | |
get_module_class_from_name = FullyShardedDataParallelPlugin.get_module_class_from_name | |
else: | |
from accelerate.utils.dataclasses import get_module_class_from_name | |
from torch.distributed.fsdp.wrap import _or_policy, lambda_auto_wrap_policy, transformer_auto_wrap_policy | |
from ..tuners import PrefixEncoder, PromptEmbedding, PromptEncoder | |
default_transformer_cls_names_to_wrap = ( | |
",".join(model._no_split_modules) if getattr(model, "_no_split_modules", None) is not None else "" | |
) | |
transformer_cls_names_to_wrap = os.environ.get( | |
"FSDP_TRANSFORMER_CLS_TO_WRAP", default_transformer_cls_names_to_wrap | |
).split(",") | |
transformer_cls_to_wrap = {PrefixEncoder, PromptEncoder, PromptEmbedding} | |
for layer_class in transformer_cls_names_to_wrap: | |
transformer_cls = get_module_class_from_name(model, layer_class) | |
if transformer_cls is None: | |
raise Exception("Could not find the transformer layer class to wrap in the model.") | |
else: | |
transformer_cls_to_wrap.add(transformer_cls) | |
def lambda_policy_fn(module): | |
if ( | |
len(list(module.named_children())) == 0 | |
and getattr(module, "weight", None) is not None | |
and module.weight.requires_grad | |
): | |
return True | |
return False | |
lambda_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=lambda_policy_fn) | |
transformer_wrap_policy = functools.partial( | |
transformer_auto_wrap_policy, | |
transformer_layer_cls=transformer_cls_to_wrap, | |
) | |
auto_wrap_policy = functools.partial(_or_policy, policies=[lambda_policy, transformer_wrap_policy]) | |
return auto_wrap_policy | |
def transpose(weight, fan_in_fan_out): | |
if not fan_in_fan_out: | |
return weight | |
if isinstance(weight, torch.nn.Parameter): | |
return torch.nn.Parameter(weight.T) | |
return weight.T | |
def _is_valid_match(key: str, target_key: str): | |
""" | |
Helper function to match module names target_key and key. Makes sure that either the key is exactly the target_key | |
or the target_key is a submodule of key | |
""" | |
if key.endswith(target_key): | |
if len(key) > len(target_key): | |
return key.endswith("." + target_key) # must be a sub module | |
return True | |
return False | |
def _get_batch_size(input_ids: Optional[torch.Tensor], inputs_embeds: Optional[torch.Tensor]) -> int: | |
"""Get the batch size based on either input_ids or input_embeds | |
Raises an ValueError if both are None. | |
""" | |
if (input_ids is None) and (inputs_embeds is None): | |
raise ValueError("You have to provide either input_ids or inputs_embeds") | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
return batch_size | |
def get_quantization_config(model: torch.nn.Module, method: str): | |
""" | |
Get the quantization config of the related quantization method | |
""" | |
if ( | |
hasattr(model, "config") | |
and hasattr(model.config, "quantization_config") | |
and (getattr(model, "quantization_method", None) == method) | |
): | |
return model.config.quantization_config | |
return None | |
def get_auto_gptq_quant_linear(gptq_quantization_config): | |
""" | |
Get the right AutoGPTQQuantLinear class based on the quantization config file | |
""" | |
if gptq_quantization_config is not None and is_auto_gptq_available(): | |
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear | |
desc_act = gptq_quantization_config.desc_act | |
group_size = gptq_quantization_config.group_size | |
bits = gptq_quantization_config.bits | |
if hasattr(gptq_quantization_config, "use_exllama"): | |
use_exllama = gptq_quantization_config.use_exllama | |
else: | |
use_exllama = not gptq_quantization_config.disable_exllama | |
if hasattr(gptq_quantization_config, "exllama_config"): | |
exllama_version = gptq_quantization_config.exllama_config["version"] | |
else: | |
exllama_version = 1 | |
AutoGPTQQuantLinear = dynamically_import_QuantLinear( | |
use_triton=False, | |
desc_act=desc_act, | |
group_size=group_size, | |
bits=bits, | |
disable_exllama=not (use_exllama and exllama_version == 1), | |
disable_exllamav2=not (use_exllama and exllama_version == 2), | |
) | |
return AutoGPTQQuantLinear | |
return None | |
def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]: | |
""" | |
Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For | |
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is | |
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with | |
non-overlapping lifetimes may have the same id. | |
This method is the exact same copy of | |
https://github.com/huggingface/transformers/blob/main/src/transformers/pytorch_utils.py#L282C1-L300C58 but we added | |
it here manually to avoid import issue with old versions of transformers. | |
""" | |
if tensor.device.type == "xla" and is_torch_tpu_available(): | |
# NOTE: xla tensors dont have storage | |
# use some other unique id to distinguish. | |
# this is a XLA tensor, it must be created using torch_xla's | |
# device. So the following import is safe: | |
import torch_xla | |
unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor) | |
else: | |
unique_id = storage_ptr(tensor) | |
return tensor.device, unique_id, storage_size(tensor) | |
def cast_mixed_precision_params(model, dtype): | |
""" | |
Cast all non-trainable parameters of the model to the given `dtype`. The `dtype` can be `torch.float16` or | |
`torch.bfloat16` as per the mixed-precision training you are performing. The trainable parameters are cast to full | |
precision. This is meant to reduce the GPU memory usage when using PEFT methods by using half-precision dtype for | |
non-trainable parameters. Having the trainable parameters in full-precision preserves training stability when using | |
automatic mixed-precision training. | |
Args: | |
model (`torch.nn.Module`): | |
The model to cast the non-trainable parameters of. | |
dtype (`torch.dtype`): | |
The dtype to cast the non-trainable parameters to. The `dtype` can be `torch.float16` or | |
`torch.bfloat16` as per the mixed-precision training you are performing. | |
""" | |
for p in model.parameters(): | |
if not p.requires_grad: | |
p.data = p.to(dtype) | |
else: | |
p.data = p.to(torch.float32) | |
def str_to_bool(value: str) -> int: | |
""" | |
Converts a string representation of truth to `True` (1) or `False` (0). | |
True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`; | |
""" | |
# same as function as in accelerate.utils, which replaces the deprecated distutils.util.strtobool | |
value = value.lower() | |
if value in ("y", "yes", "t", "true", "on", "1"): | |
return 1 | |
elif value in ("n", "no", "f", "false", "off", "0"): | |
return 0 | |
else: | |
raise ValueError(f"invalid truth value {value}") | |
def check_file_exists_on_hf_hub(repo_id: str, filename: str, **kwargs) -> Optional[bool]: | |
"""Check if a file exists on HF Hub, if check was not successful returns None instead of erroring. | |
Respect offline mode if set. | |
""" | |
exists: Optional[bool] = None | |
if str_to_bool(os.environ.get("HF_HUB_OFFLINE", "0")): | |
# user set offline mode, cannot check | |
return exists | |
try: | |
exists = file_exists(repo_id, filename, **kwargs) | |
except (HFValidationError, EntryNotFoundError): | |
# error, exists stays None | |
pass | |
except Exception as e: | |
warnings.warn( | |
f"Unable to fetch remote file due to the following error {e} - silently ignoring the lookup" | |
f" for the file {filename} in {repo_id}." | |
) | |
return exists | |