Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import warnings | |
from typing import Any, List, Optional | |
import torch | |
import torch.nn as nn | |
from transformers.pytorch_utils import Conv1D | |
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge | |
from peft.utils import transpose | |
class IA3Layer(BaseTunerLayer): | |
# All names of layers that may contain adapter weights | |
adapter_layer_names = ("ia3_l",) | |
def __init__(self, base_layer: nn.Module, is_feedforward: bool, **kwargs) -> None: | |
self.base_layer = base_layer | |
self.ia3_l = nn.ParameterDict({}) | |
# Mark the weight as unmerged | |
self._disable_adapters = False | |
self.merged_adapters = [] | |
self.is_feedforward = is_feedforward | |
base_layer = self.get_base_layer() | |
if isinstance(base_layer, nn.Linear): | |
in_features, out_features = base_layer.in_features, base_layer.out_features | |
elif isinstance(base_layer, nn.Conv2d): | |
in_features, out_features = base_layer.in_channels, base_layer.out_channels | |
elif isinstance(base_layer, nn.Embedding): | |
in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim | |
elif isinstance(base_layer, Conv1D): | |
in_features, out_features = ( | |
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape | |
) | |
else: | |
raise ValueError(f"Unsupported layer type {type(base_layer)}") | |
self.in_features = in_features | |
self.out_features = out_features | |
def update_layer(self, adapter_name, init_ia3_weights): | |
# This code works for linear layers, override for other layer types | |
# Actual trainable parameters | |
if self.is_feedforward: | |
weight = torch.randn((1, self.in_features)) | |
else: | |
weight = torch.randn((self.out_features, 1)) | |
self.ia3_l[adapter_name] = nn.Parameter(weight) | |
if init_ia3_weights: | |
self.reset_ia3_parameters(adapter_name) | |
self.to(self.get_base_layer().weight.device) | |
self.set_adapter(self.active_adapters) | |
def reset_ia3_parameters(self, adapter_name): | |
if adapter_name in self.ia3_l.keys(): | |
# initialize learned vector with torch.ones | |
nn.init.constant_(self.ia3_l[adapter_name], 1.0) | |
class Linear(nn.Module, IA3Layer): | |
# (IA)^3 implemented in a dense layer | |
def __init__( | |
self, | |
base_layer: nn.Module, | |
adapter_name: str, | |
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) | |
is_feedforward: bool = False, # Set to True if the layer is treated as a feedforward layer | |
is_target_conv_1d_layer: bool = False, # whether target module is a conv1d layer. useful while unloading later | |
init_ia3_weights: bool = True, # whether to initialize IA3 weights | |
**kwargs, | |
) -> None: | |
super().__init__() | |
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) | |
self.fan_in_fan_out = fan_in_fan_out | |
self.is_target_conv_1d_layer = is_target_conv_1d_layer | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, init_ia3_weights) | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If True, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`List[str]`, *optional*): | |
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults | |
to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self.ia3_l.keys(): | |
base_layer = self.get_base_layer() | |
ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) | |
orig_dtype = base_layer.weight.data.dtype | |
if safe_merge: | |
orig_weights = base_layer.weight.data | |
orig_weights = torch.mul(orig_weights, ia3_l) | |
if not torch.isfinite(orig_weights).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
base_layer.weight.data = orig_weights.to(orig_dtype) | |
else: | |
base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l).to(orig_dtype) | |
if not self.is_feedforward and (base_layer.bias is not None): | |
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) | |
orig_dtype = base_layer.bias.data.dtype | |
base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data).to(orig_dtype) | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
warnings.warn("Unmerge result can be inaccurate for (IA)^3.") | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self.ia3_l.keys(): | |
base_layer = self.get_base_layer() | |
# Add tolerace to avoid division by zero | |
ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) + 1e-8 | |
orig_dtype = base_layer.weight.data.dtype | |
base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l).to(orig_dtype) | |
if not self.is_feedforward and (base_layer.bias is not None): | |
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) | |
orig_dtype = base_layer.bias.data.dtype | |
base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-8).to(orig_dtype) | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
dtype = previous_dtype = x.dtype | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result = self.base_layer(x, *args, **kwargs) | |
elif self.merged: | |
result = self.base_layer(x, *args, **kwargs) | |
else: | |
ia3_scaling = 1 | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.ia3_l.keys(): | |
continue | |
dtype = self.ia3_l[active_adapter].dtype | |
ia3_scaling *= self.ia3_l[active_adapter].flatten() | |
if self.is_feedforward: | |
x = x.to(dtype) | |
# TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype | |
# e.g. bf16 vs fp32. Is that okay? | |
interm = (x * ia3_scaling).to(previous_dtype) | |
result = self.base_layer(interm, *args, **kwargs) | |
else: | |
result = self.base_layer(x, *args, **kwargs) | |
result_dtype = result.dtype | |
result = (result * ia3_scaling).to(result_dtype) | |
return result | |
class Conv2d(nn.Module, IA3Layer): | |
def __init__( | |
self, | |
base_layer: nn.Module, | |
adapter_name: str, | |
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) | |
is_feedforward: bool = False, # Set to True if the layer is treated as a feedforward layer | |
init_ia3_weights: bool = True, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) | |
self.fan_in_fan_out = fan_in_fan_out | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, init_ia3_weights) | |
def update_layer(self, adapter_name, init_ia3_weights): | |
# Actual trainable parameters | |
if self.is_feedforward: | |
weight = torch.randn((1, self.in_features, 1, 1)) | |
else: | |
weight = torch.randn((1, self.out_features, 1, 1)) | |
self.ia3_l[adapter_name] = nn.Parameter(weight) | |
if init_ia3_weights: | |
self.reset_ia3_parameters(adapter_name) | |
self.to(self.get_base_layer().weight.device) | |
self.set_adapter(self.active_adapters) | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
""" | |
Merge the active adapter weights into the base weights | |
Args: | |
safe_merge (`bool`, *optional*): | |
If True, the merge operation will be performed in a copy of the original weights and check for NaNs | |
before merging the weights. This is useful if you want to check if the merge operation will produce | |
NaNs. Defaults to `False`. | |
adapter_names (`List[str]`, *optional*): | |
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults | |
to `None`. | |
""" | |
adapter_names = check_adapters_to_merge(self, adapter_names) | |
if not adapter_names: | |
# no adapter to merge | |
return | |
for active_adapter in adapter_names: | |
if active_adapter in self.ia3_l.keys(): | |
base_layer = self.get_base_layer() | |
ia3_scaling = self.ia3_l[active_adapter].data | |
if not self.is_feedforward: | |
ia3_scaling = ia3_scaling.permute(1, 0, 2, 3) | |
if safe_merge: | |
output_weight = torch.mul(base_layer.weight.data, ia3_scaling).clone() | |
if not torch.isfinite(output_weight).all(): | |
raise ValueError( | |
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" | |
) | |
base_layer.weight.data = output_weight | |
else: | |
base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_scaling) | |
if not self.is_feedforward and (base_layer.bias is not None): | |
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) | |
base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) | |
self.merged_adapters.append(active_adapter) | |
def unmerge(self) -> None: | |
""" | |
This method unmerges all merged adapter layers from the base weights. | |
""" | |
if not self.merged: | |
warnings.warn("Already unmerged. Nothing to do.") | |
return | |
warnings.warn("Unmerge result can be inaccurate for (IA)^3.") | |
while len(self.merged_adapters) > 0: | |
active_adapter = self.merged_adapters.pop() | |
if active_adapter in self.ia3_l.keys(): | |
base_layer = self.get_base_layer() | |
# divide by (IA)^3 vector. Add tolerace to avoid division by zero | |
ia3_scaling = self.ia3_l[active_adapter].data | |
if not self.is_feedforward: | |
ia3_scaling = ia3_scaling.permute(1, 0, 2, 3) | |
base_layer.weight.data = torch.div(base_layer.weight.data, ia3_scaling + 1e-8) | |
if not self.is_feedforward and (base_layer.bias is not None): | |
scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) | |
base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) | |
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: | |
dtype = previous_dtype = x.dtype | |
if self.disable_adapters: | |
if self.merged: | |
self.unmerge() | |
result = self.base_layer(x, *args, **kwargs) | |
elif self.merged: | |
result = self.base_layer(x, *args, **kwargs) | |
else: | |
ia3_scaling = 1 | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.ia3_l.keys(): | |
continue | |
dtype = self.ia3_l[active_adapter].dtype | |
ia3_scaling *= self.ia3_l[active_adapter] | |
if self.is_feedforward: | |
x = x.to(dtype) | |
# TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype | |
# e.g. bf16 vs fp32. Is that okay? | |
interm = (x * ia3_scaling).to(self.get_base_layer().weight.dtype) | |
result = self.base_layer(interm, *args, **kwargs) | |
else: | |
result = self.base_layer(x, *args, **kwargs) | |
result = result.to(dtype) * ia3_scaling | |
result = result.to(previous_dtype) | |
return result | |