Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# The implementation is based on "Parameter-Efficient Orthogonal Finetuning | |
# via Butterfly Factorization" (https://arxiv.org/abs/2311.06243) in ICLR 2024. | |
from dataclasses import dataclass, field | |
from typing import List, Optional, Union | |
from peft.config import PeftConfig | |
from peft.utils import PeftType | |
class BOFTConfig(PeftConfig): | |
""" | |
This is the configuration class to store the configuration of a [`BOFTModel`]. | |
Args: | |
boft_block_size (`int`): BOFT block size across different layers. | |
boft_block_num (`int`): Number of BOFT blocks per injected layer. | |
boft_n_butterfly_factor (`int`): Number of butterfly factors across different layers. | |
target_modules (`Union[List[str],str]`): The names of the modules to apply the adapter to. | |
boft_dropout (`float`): The multiplicative dropout probability for BOFT layers. | |
fan_in_fan_out (`bool`): Set this to True if the layer to replace stores weight like (fan_in, fan_out). | |
For example, gpt-2 uses `Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set | |
to `True`. | |
bias (`str`): Bias type for BOFT. Can be 'none', 'all' or 'boft_only'. If 'all' or 'boft_only', the | |
corresponding biases will be updated during training. Be aware that this means that, even when disabling | |
the adapters, the model will not produce the same output as the base model would have without adaptation. | |
modules_to_save (`List[str]`):List of modules apart from BOFT layers to be set as trainable | |
and saved in the final checkpoint. | |
layers_to_transform (`Union[List[int],int]`): | |
The layer indexes to transform, if this argument is specified, it will apply the BOFT transformations on | |
the layer indexes that are specified in this list. If a single integer is passed, it will apply the BOFT | |
transformations on the layer at this index. | |
layers_pattern (`str`): | |
The layer pattern name, used only if `layers_to_transform` is different from `None` and if the layer | |
pattern is not in the common layers pattern. | |
""" | |
boft_block_size: int = field( | |
default=4, | |
metadata={ | |
"help": "BOFT block size across different layers.", | |
"note": "You can only specify either boft_block_size or boft_block_num, but not both simultaneously, because boft_block_size x boft_block_num = layer dimension.", | |
}, | |
) | |
boft_block_num: int = field( | |
default=0, | |
metadata={ | |
"help": "Number of BOFT blocks per injected layer.", | |
"note": "You can only specify either boft_block_size or boft_block_num, but not both simultaneously, because boft_block_size x boft_block_num = layer dimension.", | |
}, | |
) | |
boft_n_butterfly_factor: int = field( | |
default=1, | |
metadata={ | |
"help": "Number of butterfly factors.", | |
"note": ( | |
"for example, boft_n_butterfly_factor=2, the effective block size of OFT becomes twice as big and the number of blocks become half.", | |
"note: for boft_n_butterfly_factor=1, BOFT is the same as vanilla OFT.", | |
), | |
}, | |
) | |
target_modules: Optional[Union[List[str], str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of module names or regex expression of the module names to replace with BOFT.", | |
"example": "For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' ", | |
}, | |
) | |
boft_dropout: float = field(default=0.0, metadata={"help": "BOFT multiplicative dropout"}) | |
fan_in_fan_out: bool = field( | |
default=False, | |
metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"}, | |
) | |
bias: str = field(default="none", metadata={"help": "Bias type for BOFT. Can be 'none', 'all' or 'boft_only'"}) | |
modules_to_save: Optional[List[str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of modules apart from BOFT layers to be set as trainable and saved in the final checkpoint. ", | |
"note": ( | |
"For example, in Sequence Classification or Token Classification tasks, ", | |
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved.", | |
), | |
}, | |
) | |
init_weights: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to initialize the weights of the BOFT layers with their default initialization. Don't change ", | |
"this setting, except if you know exactly what you're doing.", | |
), | |
}, | |
) | |
layers_to_transform: Optional[Union[List[int], int]] = field( | |
default=None, | |
metadata={ | |
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index." | |
}, | |
) | |
layers_pattern: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern." | |
}, | |
) | |
def __post_init__(self): | |
self.peft_type = PeftType.BOFT | |
self.target_modules = ( | |
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules | |
) | |
if self.boft_block_size == 0 and self.boft_block_num == 0: | |
raise ValueError("You must specify either boft_block_size or boft_block_num.") | |
if not (self.boft_block_size != 0) ^ (self.boft_block_num != 0): | |
raise ValueError( | |
f"You can only specify either boft_block_size ({self.boft_block_size}) or boft_block_num ({self.boft_block_num}), " | |
"but not both simultaneously, because boft_block_size x boft_block_num != in_features." | |
) | |