Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import List, Optional, Union | |
from peft.config import PeftConfig | |
from peft.utils import PeftType | |
class IA3Config(PeftConfig): | |
""" | |
This is the configuration class to store the configuration of a [`IA3Model`]. | |
Args: | |
target_modules (`Optional[Union[List[str], str]]`): | |
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified | |
names will be replaced. When passing a string, a regex match will be performed. When passing a list of | |
strings, either an exact match will be performed or it is checked if the name of the module ends with any | |
of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen, | |
excluding the output layer. If this is not specified, modules will be chosen according to the model | |
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify | |
the target modules manually. | |
feedforward_modules (`Optional[Union[List[str], str]]`): | |
The names of the modules to be treated as feedforward modules, as in the original paper. These modules will | |
have (IA)³ vectors multiplied to the input, instead of the output. `feedforward_modules` must be a name or | |
a subset of names present in `target_modules`. | |
fan_in_fan_out (`bool`): | |
Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses | |
`Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`. | |
modules_to_save (`Optional[List[str]]`): | |
List of modules apart from (IA)³ layers to be set as trainable and saved in the final checkpoint. | |
init_ia3_weights (`bool`): | |
Whether to initialize the vectors in the (IA)³ layers, defaults to `True`. Setting this to `False` is | |
discouraged. | |
""" | |
target_modules: Optional[Union[List[str], str]] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"List of module names or regex expression of the module names to replace with (IA)³." | |
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'." | |
"This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer." | |
"If not specified, modules will be chosen according to the model architecture, If the architecture is " | |
"not known, an error will be raised -- in this case, you should specify the target modules manually." | |
), | |
}, | |
) | |
feedforward_modules: Optional[Union[List[str], str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of module names or a regex expression of module names which are feedforward" | |
"For example, ['output.dense']" | |
}, | |
) | |
fan_in_fan_out: bool = field( | |
default=False, | |
metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"}, | |
) | |
modules_to_save: Optional[List[str]] = field( | |
default=None, | |
metadata={ | |
"help": "List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. " | |
"For example, in Sequence Classification or Token Classification tasks, " | |
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." | |
}, | |
) | |
init_ia3_weights: bool = field( | |
default=True, | |
metadata={"help": "Whether to initialize the vectors in the (IA)^3 layers."}, | |
) | |
def __post_init__(self): | |
self.peft_type = PeftType.IA3 | |
self.target_modules = ( | |
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules | |
) | |
self.feedforward_modules = ( | |
set(self.feedforward_modules) if isinstance(self.feedforward_modules, list) else self.feedforward_modules | |
) | |
# check if feedforward_modules is a subset of target_modules. run the check only if both are sets | |
if isinstance(self.feedforward_modules, set) and isinstance(self.target_modules, set): | |
if not self.feedforward_modules.issubset(self.target_modules): | |
raise ValueError("`feedforward_modules` should be a subset of `target_modules`") | |