Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from peft.tuners.lora import LoraConfig | |
from peft.utils import PeftType | |
class AdaLoraConfig(LoraConfig): | |
""" | |
This is the configuration class to store the configuration of a [`~peft.AdaLora`]. | |
Args: | |
target_r (`int`): The target average rank of incremental matrix. | |
init_r (`int`): The initial rank for each incremental matrix. | |
tinit (`int`): The steps of initial fine-tuning warmup. | |
tfinal (`int`): The step of final fine-tuning. | |
deltaT (`int`): The time internval between two budget allocations. | |
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing. | |
beta2 (`float`): The hyperparameter of EMA for undertainty quantification. | |
orth_reg_weight (`float`): The coefficient of orthogonal regularization. | |
total_step (`int`): The total training steps that should be specified before training. | |
rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator. | |
""" | |
target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."}) | |
init_r: int = field(default=12, metadata={"help": "Initial Lora matrix dimension."}) | |
tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."}) | |
tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."}) | |
deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."}) | |
beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) | |
beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."}) | |
orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."}) | |
total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."}) | |
rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."}) | |
def __post_init__(self): | |
self.peft_type = PeftType.ADALORA | |
if self.use_dora: | |
raise ValueError(f"{self.peft_type} does not support DoRA.") | |
if self.loftq_config: | |
raise ValueError(f"{self.peft_type} does not support LOFTQ.") | |
self.target_modules = ( | |
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules | |
) | |
# if target_modules is a regex expression, then layers_to_transform should be None | |
if isinstance(self.target_modules, str) and self.layers_to_transform is not None: | |
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.") | |
# if target_modules is a regex expression, then layers_pattern should be None | |
if isinstance(self.target_modules, str) and self.layers_pattern is not None: | |
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.") | |