Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Optional | |
import torch | |
from peft.import_utils import is_aqlm_available | |
from peft.tuners.lora.layer import LoraLayer | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
if is_aqlm_available(): | |
from aqlm import QuantizedLinear | |
class AqlmLoraLinear(torch.nn.Module, LoraLayer): | |
def __init__( | |
self, | |
base_layer, | |
adapter_name: str, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0.0, | |
init_lora_weights: bool = True, | |
use_rslora: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
LoraLayer.__init__(self, base_layer) | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora) | |
def forward(self, x: torch.Tensor): | |
# note: logic differs from default Linear because merging is not supported | |
result = self.base_layer(x) | |
if self.disable_adapters: | |
return result | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.lora_A.keys(): | |
continue | |
lora_A = self.lora_A[active_adapter] | |
lora_B = self.lora_B[active_adapter] | |
dropout = self.lora_dropout[active_adapter] | |
scaling = self.scaling[active_adapter] | |
requires_conversion = not torch.is_autocast_enabled() | |
if requires_conversion: | |
expected_dtype = result.dtype | |
x = x.to(lora_A.weight.dtype) | |
output = lora_B(lora_A(dropout(x))) | |
if requires_conversion: | |
output = output.to(expected_dtype) | |
output = output * scaling | |
result += output | |
return result | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "lora." + rep | |
# TODO: Check if it is better as suggested by users https://github.com/PanQiWei/AutoGPTQ/pull/102 | |
# def reset_lora_parameters(self, adapter_name): | |
# if adapter_name in self.lora_A.keys(): | |
# torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight) | |
# torch.nn.init.zeros_(self.lora_B[adapter_name].weight) | |
def dispatch_aqlm( | |
target: torch.nn.Module, | |
adapter_name: str, | |
**kwargs: Any, | |
) -> Optional[torch.nn.Module]: | |
new_module = None | |
if isinstance(target, BaseTunerLayer): | |
target_base_layer = target.get_base_layer() | |
else: | |
target_base_layer = target | |
if is_aqlm_available() and isinstance(target_base_layer, QuantizedLinear): | |
new_module = AqlmLoraLinear(target, adapter_name, **kwargs) | |
target.qweight = target_base_layer.codes | |
return new_module | |