Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, List, Optional | |
import torch | |
from peft.import_utils import is_eetq_available | |
from peft.tuners.lora.layer import LoraLayer | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
if is_eetq_available(): | |
from eetq import EetqLinear | |
class EetqLoraLinear(torch.nn.Module, LoraLayer): | |
def __init__( | |
self, | |
base_layer, | |
adapter_name, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0.0, | |
init_lora_weights: bool = True, | |
use_rslora: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
LoraLayer.__init__(self, base_layer) | |
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter | |
# for backwards compatibility | |
self.quant_linear_module = base_layer | |
self._active_adapter = adapter_name | |
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora) | |
def forward(self, x: torch.Tensor): | |
result = self.quant_linear_module(x) | |
if self.disable_adapters: | |
return result | |
for active_adapter in self.active_adapters: | |
if active_adapter not in self.lora_A.keys(): | |
continue | |
lora_A = self.lora_A[active_adapter] | |
lora_B = self.lora_B[active_adapter] | |
dropout = self.lora_dropout[active_adapter] | |
scaling = self.scaling[active_adapter] | |
requires_conversion = not torch.is_autocast_enabled() | |
if requires_conversion: | |
expected_dtype = result.dtype | |
x = x.to(lora_A.weight.dtype) | |
output = lora_B(lora_A(dropout(x))) | |
if requires_conversion: | |
output = output.to(expected_dtype) | |
output = output * scaling | |
result = result + output | |
return result | |
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: | |
raise AttributeError("Merging LoRA layers is not supported for Eetq layers.") | |
def unmerge(self) -> None: | |
raise AttributeError("Unmerging LoRA layers is not supported for Eetq layers.") | |
def __repr__(self) -> str: | |
rep = super().__repr__() | |
return "lora." + rep | |
def dispatch_eetq( | |
target: torch.nn.Module, | |
adapter_name: str, | |
**kwargs: Any, | |
) -> Optional[torch.nn.Module]: | |
new_module = None | |
if isinstance(target, BaseTunerLayer): | |
target_base_layer = target.get_base_layer() | |
else: | |
target_base_layer = target | |
if is_eetq_available() and isinstance(target_base_layer, EetqLinear): | |
new_module = EetqLoraLinear(target, adapter_name, **kwargs) | |
target.weight = target_base_layer.weight | |
if hasattr(target, "bias"): | |
target.bias = target_base_layer.bias | |
return new_module | |