Spaces:
Running
on
Zero
Running
on
Zero
// Author: Yao Feng | |
// Date: 2023/08 | |
// Description: cuda kernel for fast block diag | |
namespace{ | |
template <typename scalar_t> | |
__global__ void forward_fast_block_diag_cuda_kernel( | |
const scalar_t* __restrict__ input, //[z, N, b, b] | |
scalar_t* output, //[z, Nxb, Nxb] | |
int z, int N, int b | |
) { | |
const int i = blockIdx.x * blockDim.x + threadIdx.x; | |
if (i >= z*N*b*b) { | |
return; | |
} | |
const int zi = i/(N*b*b); | |
const int Ni = (i%(N*b*b))/(b*b); | |
const int x = ((i%(N*b*b))%(b*b))/b; | |
const int y = ((i%(N*b*b))%(b*b))%b; | |
output[zi*N*b*N*b + (Ni*b+x)*N*b + Ni*b + y] = input[zi*N*b*b + Ni*b*b + x*b + y]; | |
} | |
template <typename scalar_t> | |
__global__ void backward_fast_block_diag_cuda_kernel( | |
const scalar_t* __restrict__ grad_output, | |
scalar_t* grad_input, | |
int z, int N, int b | |
) { | |
const int i = blockIdx.x * blockDim.x + threadIdx.x; | |
if (i >= z*N*b*b) { | |
return; | |
} | |
const int zi = i/(N*b*b); | |
const int Ni = (i%(N*b*b))/(b*b); | |
const int x = ((i%(N*b*b))%(b*b))/b; | |
const int y = ((i%(N*b*b))%(b*b))%b; | |
grad_input[zi*N*b*b + Ni*b*b + x*b + y] = grad_output[zi*N*b*N*b + (Ni*b+x)*N*b + Ni*b + y]; | |
} // namespace | |
} | |
std::vector<at::Tensor> forward_fast_block_diag_cuda( | |
at::Tensor input | |
){ | |
const auto z = input.size(0); | |
const auto N = input.size(1); | |
const auto b = input.size(2); | |
// print(channel_size) | |
const int threads = 512; | |
const dim3 blocks_1 ((z*N*b*b - 1) / threads +1); | |
// initlaize output | |
auto output = at::zeros({z, N*b, N*b}, input.options()); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "forward_fast_block_diag1", ([&] { | |
forward_fast_block_diag_cuda_kernel<scalar_t><<<blocks_1, threads>>>( | |
input.data<scalar_t>(), | |
output.data<scalar_t>(), | |
z, N, b); | |
})); | |
cudaError_t err = cudaGetLastError(); | |
if (err != cudaSuccess) | |
printf("Error in forward_fast_block_diag_cuda_kernel: %s\n", cudaGetErrorString(err)); | |
return {output}; | |
} | |
std::vector<at::Tensor> backward_fast_block_diag_cuda( | |
at::Tensor grad_output, | |
at::Tensor input | |
){ | |
const auto z = input.size(0); | |
const auto N = input.size(1); | |
const auto b = input.size(2); | |
// print(channel_size) | |
const int threads = 512; | |
const dim3 blocks_1 ((z*N*b*b - 1) / threads +1); | |
// initialize grad input | |
auto grad_input = at::zeros_like(input); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_output.type(), "backward_fast_block_diag", ([&] { | |
backward_fast_block_diag_cuda_kernel<scalar_t><<<blocks_1, threads>>>( | |
grad_output.data<scalar_t>(), | |
grad_input.data<scalar_t>(), | |
z, N, b); | |
})); | |
cudaError_t err = cudaGetLastError(); | |
if (err != cudaSuccess) | |
printf("Error in backward_fast_block_diag_cuda_kernel: %s\n", cudaGetErrorString(err)); | |
return {grad_input}; | |
} | |