Spaces:
Runtime error
Runtime error
| from torch import Tensor, nn | |
| from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel, | |
| T5Tokenizer) | |
| class HFEmbedder(nn.Module): | |
| def __init__(self, version: str, max_length: int, is_clip: bool, **hf_kwargs): | |
| super().__init__() | |
| self.is_clip = is_clip | |
| self.max_length = max_length | |
| self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | |
| if self.is_clip: | |
| self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, from_tf=False, legacy=False, max_length=max_length) | |
| self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, from_tf=False, **hf_kwargs) | |
| else: | |
| self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, from_tf=False, legacy=False, max_length=max_length) | |
| self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained( | |
| version, | |
| from_tf=False, | |
| local_files_only=False, | |
| force_download=True, | |
| resume_download=True, | |
| **hf_kwargs | |
| ) | |
| self.hf_module = self.hf_module.eval().requires_grad_(False) | |
| def forward(self, text) -> Tensor: | |
| batch_encoding = self.tokenizer( | |
| text, | |
| truncation=True, | |
| max_length=self.max_length, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| padding="max_length", | |
| return_tensors="pt", | |
| ) | |
| outputs = self.hf_module( | |
| input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
| attention_mask=None, | |
| output_hidden_states=False, | |
| ) | |
| return outputs[self.output_key] |