Flux-Mini / model.py
daoyuan98's picture
fix model shape error
2f7ddaa verified
raw
history blame
9.65 kB
from dataclasses import dataclass
import numpy as np
import torch
from torch import Tensor, nn
from layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding)
import torch.distributed as dist
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
_supports_gradient_checkpointing = True
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias
)
for i in range(1, params.depth+1)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio
)
for i in range(1, params.depth_single_blocks+1)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
self.gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
def attn_processors(self):
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
block_controlnet_hidden_states=None,
guidance: Tensor = None,
image_proj: Tensor = None,
ip_scale: Tensor = 1.0,
return_intermediate: bool = False,
):
inputs = [img, img_ids, txt, txt_ids, timesteps, y]
for i, input in enumerate(inputs):
if input.shape[0] != 1:
inputs[i] = input.unsqueeze(0)
img, img_ids, txt, txt_ids, timestpes, y = inputs
if return_intermediate:
intermediate_double = []
intermediate_single = []
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
if block_controlnet_hidden_states is not None:
controlnet_depth = len(block_controlnet_hidden_states)
for index_block, block in enumerate(self.double_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
img, txt = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
txt,
vec,
pe,
image_proj,
ip_scale,
use_reentrant=False
)
else:
img, txt = block(
img=img,
txt=txt,
vec=vec,
pe=pe,
image_proj=image_proj,
ip_scale=ip_scale
)
if return_intermediate:
intermediate_double.append(
[img, txt]
)
if block_controlnet_hidden_states is not None:
img = img + block_controlnet_hidden_states[index_block % 2]
img = torch.cat((txt, img), dim=1)
txt_dim = txt.shape[1]
for index_block, block in enumerate(self.single_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
img = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
img,
vec,
pe,
use_reentrant=False
)
else:
img = block(img, vec=vec, pe=pe)
# if return_intermediate:
img_ = img[:, txt.shape[1]:, ...]
txt_ = img[:, :txt.shape[1], ...]
if return_intermediate:
intermediate_single.append(
[img_, txt_]
)
img = torch.cat([txt_, img_], dim=1)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
if return_intermediate:
return img, intermediate_double, intermediate_single
else:
return img.squeeze()