Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
import numpy as np | |
import torch | |
from torch import Tensor, nn | |
from layers import (DoubleStreamBlock, EmbedND, LastLayer, | |
MLPEmbedder, SingleStreamBlock, | |
timestep_embedding) | |
import torch.distributed as dist | |
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid | |
class FluxParams: | |
in_channels: int | |
vec_in_dim: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list | |
theta: int | |
qkv_bias: bool | |
guidance_embed: bool | |
class Flux(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__(self, params: FluxParams): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
) | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias | |
) | |
for i in range(1, params.depth+1) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio | |
) | |
for i in range(1, params.depth_single_blocks+1) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
self.gradient_checkpointing = True | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def attn_processors(self): | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
block_controlnet_hidden_states=None, | |
guidance: Tensor = None, | |
image_proj: Tensor = None, | |
ip_scale: Tensor = 1.0, | |
return_intermediate: bool = False, | |
): | |
inputs = [img, img_ids, txt, txt_ids, timesteps, y] | |
for i, input in enumerate(inputs): | |
if input.shape[0] != 1: | |
inputs[i] = input.unsqueeze(0) | |
img, img_ids, txt, txt_ids, timestpes, y = inputs | |
if return_intermediate: | |
intermediate_double = [] | |
intermediate_single = [] | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
if block_controlnet_hidden_states is not None: | |
controlnet_depth = len(block_controlnet_hidden_states) | |
for index_block, block in enumerate(self.double_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
img, txt = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
img, | |
txt, | |
vec, | |
pe, | |
image_proj, | |
ip_scale, | |
use_reentrant=False | |
) | |
else: | |
img, txt = block( | |
img=img, | |
txt=txt, | |
vec=vec, | |
pe=pe, | |
image_proj=image_proj, | |
ip_scale=ip_scale | |
) | |
if return_intermediate: | |
intermediate_double.append( | |
[img, txt] | |
) | |
if block_controlnet_hidden_states is not None: | |
img = img + block_controlnet_hidden_states[index_block % 2] | |
img = torch.cat((txt, img), dim=1) | |
txt_dim = txt.shape[1] | |
for index_block, block in enumerate(self.single_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
img = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
img, | |
vec, | |
pe, | |
use_reentrant=False | |
) | |
else: | |
img = block(img, vec=vec, pe=pe) | |
# if return_intermediate: | |
img_ = img[:, txt.shape[1]:, ...] | |
txt_ = img[:, :txt.shape[1], ...] | |
if return_intermediate: | |
intermediate_single.append( | |
[img_, txt_] | |
) | |
img = torch.cat([txt_, img_], dim=1) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
if return_intermediate: | |
return img, intermediate_double, intermediate_single | |
else: | |
return img.squeeze() | |