DI-PCG / app.py
thuzhaowang's picture
update arxiv link
ba640d5
import os
import yaml
import numpy as np
from PIL import Image
import rembg
import importlib
import torch
import tempfile
import json
import spaces
from core.models import DiT_models
from core.diffusion import create_diffusion
from core.utils.dinov2 import Dinov2Model
from core.utils.math_utils import unnormalize_params
from huggingface_hub import hf_hub_download
# Setup PyTorch:
torch.set_grad_enabled(False)
device = torch.device('cuda')
# Define the cache directory for model files
#model_cache_dir = './ckpts/'
#os.makedirs(model_cache_dir, exist_ok=True)
# load generators & models
generators_choices = ["chair", "table", "vase", "basket", "flower", "dandelion"]
factory_names = ["ChairFactory", "TableDiningFactory", "VaseFactory", "BasketBaseFactory", "FlowerFactory", "DandelionFactory"]
generator_path = "./core/assets/"
generators, configs, models = [], [], []
for category, factory in zip(generators_choices, factory_names):
# load generator
module = importlib.import_module(f"core.assets.{category}")
gen = getattr(module, factory)
generator = gen(0)
generators.append(generator)
# load configs
config_path = f"./configs/demo/{category}_demo.yaml"
with open(config_path) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
configs.append(cfg)
# load models
latent_size = cfg["num_params"]
model = DiT_models[cfg["model"]](input_size=latent_size).to(device)
# load a custom DiT checkpoint from train.py:
# download the checkpoint if not found:
if not os.path.exists(cfg["ckpt_path"]):
model_dir, model_name = os.path.dirname(cfg["ckpt_path"]), os.path.basename(cfg["ckpt_path"])
os.makedirs(model_dir, exist_ok=True)
checkpoint_path = hf_hub_download(repo_id="TencentARC/DI-PCG",
local_dir=model_dir, filename=model_name)
print("Downloading checkpoint {} from Hugging Face Hub...".format(model_name))
print("Loading model from {}".format(cfg["ckpt_path"]))
state_dict = torch.load(cfg["ckpt_path"], map_location=lambda storage, loc: storage)
if "ema" in state_dict: # supports checkpoints from train.py
state_dict = state_dict["ema"]
model.load_state_dict(state_dict)
model.eval()
models.append(model)
diffusion = create_diffusion(str(cfg["num_sampling_steps"]))
# feature model
feature_model = Dinov2Model()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background):
# resize
if input_image.size[0] != 256 or input_image.size[1] != 256:
input_image = input_image.resize((256, 256))
# remove background
if do_remove_background:
processed_image = rembg.remove(np.array(input_image))
# white background
else:
processed_image = input_image
return processed_image
@spaces.GPU
def sample(image, seed, category):
# seed
np.random.seed(seed)
torch.manual_seed(seed)
# generator & model
idx = generators_choices.index(category)
generator, cfg, model = generators[idx], configs[idx], models[idx]
# encode condition image feature
# convert RGBA images to RGB, white background
input_image_np = np.array(image)
mask = input_image_np[:, :, -1:] > 0
input_image_np = input_image_np[:, :, :3] * mask + 255 * (1 - mask)
image = input_image_np.astype(np.uint8)
img_feat = feature_model.encode_batch_imgs([np.array(image)], global_feat=False)
# Create sampling noise:
latent_size = int(cfg['num_params'])
z = torch.randn(1, 1, latent_size, device=device)
y = img_feat
# No classifier-free guidance:
model_kwargs = dict(y=y)
# Sample target params:
samples = diffusion.p_sample_loop(
model.forward, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
samples = samples[0].squeeze(0).cpu().numpy()
# unnormalize params
params_dict = generator.params_dict
params_original = unnormalize_params(samples, params_dict)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name
params_fpath = tempfile.NamedTemporaryFile(suffix=f".npy", delete=False).name
np.save(params_fpath, params_original)
print(mesh_fpath)
print(params_fpath)
# generate 3D using sampled params - TODO: this is a hacky way to go through PCG pipeline, avoiding conflict with gradio
command = f"python ./scripts/generate.py --config ./configs/demo/{category}_demo.yaml --output_path {mesh_fpath} --seed {seed} --params_path {params_fpath}"
os.system(command)
return mesh_fpath, mesh_fpath
import gradio as gr
_HEADER_ = '''
<h2><b>DI-PCG πŸ€— Gradio Demo</b></h2>
This is official demo for our technical report <a href="">DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation </a>.
**DI-PCG** is a diffusion model which directly generates a procedural generator's parameters from a single image, resulting in high-quality 3D meshes.
Code: <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>GitHub</a>. Techenical report: <a href='http://arxiv.org/abs/2412.15200' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- DI-PCG trains a diffusion model for each procedural generator. Current supported generators are: Chair, Table, Vase, Basket, Flower, Dandelion from <a href="https://github.com/princeton-vl/infinigen">Infinigen</a>.
- The diversity of the generated meshes are strictly bounded by the procedural generators. For out-of-domain shapes, DI-PCG may only provide closest approximations.
'''
_CITE_ = r"""
If DI-PCG is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/DI-PCG' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/DI-PCG?style=social)](https://github.com/TencentARC/DI-PCG)
---
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{zhao2024dipcg,
title={DI-PCG: Diffusion-based Efficient Inverse Procedural Content Generation for High-quality 3D Asset Creation},
author={Zhao, Wang and Cao, Yanpei and Xu, Jiale and Dong, Yuejiang and Shan, Ying},
journal={arXiv preprint arXiv:2412.15200},
year={2024}
}
```
πŸ“‹ **License**
Please refer to the [LICENSE file]() for details.
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>wangzhao0849@gmail.com</b>.
"""
def update_examples(category):
samples = [[os.path.join(f"examples/{category}", img_name)]
for img_name in sorted(os.listdir(f"examples/{category}"))]
print(samples)
return gr.Dataset(samples=samples)
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
# select the generator category
with gr.Row():
with gr.Group():
generator_category = gr.Radio(
choices=[
"chair",
"table",
"vase",
"basket",
"flower",
"dandelion",
],
value="chair",
label="category",
)
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGB",
sources='upload',
width=256,
height=256,
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Processed Image",
image_mode="RGBA",
width=256,
height=256,
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=False
)
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
examples = gr.Examples(
[os.path.join(f"examples/chair", img_name) for img_name in sorted(os.listdir(f"examples/chair"))],
inputs=[input_image],
label="Examples",
examples_per_page=7
)
generator_category.change(update_examples, generator_category, outputs=examples.dataset)
with gr.Column():
with gr.Row():
with gr.Tab("Geometry"):
output_model_wireframe = gr.Model3D(
label="Output Model (Wireframe)",
#width=768,
display_mode="wireframe",
interactive=False
)
output_model_solid = gr.Model3D(
label="Output Model (Solid)",
#width=768,
interactive=False,
)
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=sample,
inputs=[processed_image, sample_seed, generator_category],
outputs=[output_model_wireframe, output_model_solid],
)
demo.queue()
demo.launch()