Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
from data.base_dataset import BaseDataset, get_params, get_transform | |
from data.image_folder import make_dataset | |
from PIL import Image, ImageEnhance | |
import random | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import cv2 | |
class SingleCoDataset(BaseDataset): | |
def modify_commandline_options(parser, is_train): | |
return parser | |
def __init__(self, opt): | |
self.opt = opt | |
self.root = opt.dataroot | |
self.dir_A = os.path.join(opt.dataroot, opt.phase, opt.folder, 'imgs') | |
self.A_paths = make_dataset(self.dir_A) | |
self.A_paths = sorted(self.A_paths) | |
self.A_size = len(self.A_paths) | |
# self.transform = get_transform(opt) | |
def __getitem__(self, index): | |
A_path = self.A_paths[index] | |
A_img = Image.open(A_path).convert('RGB') | |
# enhancer = ImageEnhance.Brightness(A_img) | |
# A_img = enhancer.enhance(1.5) | |
if os.path.exists(A_path.replace('imgs','line')[:-4]+'.jpg'): | |
# L_img = Image.open(A_path.replace('imgs','line')[:-4]+'.png') | |
L_img = cv2.imread(A_path.replace('imgs','line')[:-4]+'.jpg') | |
kernel = np.ones((3,3), np.uint8) | |
L_img = cv2.erode(L_img, kernel, iterations=1) | |
L_img = Image.fromarray(L_img) | |
else: | |
L_img = A_img | |
if A_img.size!=L_img.size: | |
# L_img = L_img.resize(A_img.size, Image.ANTIALIAS) | |
A_img = A_img.resize(L_img.size, Image.ANTIALIAS) | |
if A_img.size[1]>2500: | |
A_img = A_img.resize((A_img.size[0]//2, A_img.size[1]//2), Image.ANTIALIAS) | |
ow, oh = A_img.size | |
transform_params = get_params(self.opt, A_img.size) | |
A_transform = get_transform(self.opt, transform_params, grayscale=False) | |
L_transform = get_transform(self.opt, transform_params, grayscale=True) | |
A = A_transform(A_img) | |
L = L_transform(L_img) | |
# base = 2**9 | |
# h = int((oh+base-1) // base * base) | |
# w = int((ow+base-1) // base * base) | |
# A = F.pad(A.unsqueeze(0), (0,w-ow, 0,h-oh), 'replicate').squeeze(0) | |
# L = F.pad(L.unsqueeze(0), (0,w-ow, 0,h-oh), 'replicate').squeeze(0) | |
tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114 | |
Ai = tmp.unsqueeze(0) | |
return {'A': A, 'Ai': Ai, 'L': L, | |
'B': torch.zeros(1), 'Bs': torch.zeros(1), 'Bi': torch.zeros(1), 'Bl': torch.zeros(1), | |
'A_paths': A_path, 'h': oh, 'w': ow} | |
def __len__(self): | |
return self.A_size | |
def name(self): | |
return 'SingleCoDataset' | |
def M_transform(feat, opt, params=None): | |
outfeat = feat.copy() | |
oh,ow = feat.shape[1:] | |
x1, y1 = params['crop_pos'] | |
tw = th = opt.crop_size | |
if (ow > tw or oh > th): | |
outfeat = outfeat[:,y1:y1+th,x1:x1+tw] | |
if params['flip']: | |
outfeat = np.flip(outfeat, 2)#outfeat[:,:,::-1] | |
return torch.from_numpy(outfeat.copy()).float()*2-1.0 |