Spaces:
Running
on
Zero
Running
on
Zero
import contextlib | |
import gc | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import sys | |
import time | |
import itertools | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
import accelerate | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from datasets import load_dataset | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from safetensors.torch import load_model | |
from peft import LoraConfig | |
import gradio as gr | |
import pandas as pd | |
import transformers | |
from transformers import ( | |
AutoTokenizer, | |
PretrainedConfig, | |
CLIPVisionModelWithProjection, | |
CLIPImageProcessor, | |
CLIPProcessor, | |
) | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
ColorGuiderPixArtModel, | |
ColorGuiderSDModel, | |
UNet2DConditionModel, | |
PixArtTransformer2DModel, | |
ColorFlowPixArtAlphaPipeline, | |
ColorFlowSDPipeline, | |
UniPCMultistepScheduler, | |
) | |
from util_colorflow.utils import * | |
sys.path.append('./BidirectionalTranslation') | |
from options.test_options import TestOptions | |
from models import create_model | |
from util import util | |
from huggingface_hub import snapshot_download | |
model_global_path = snapshot_download(repo_id="JunhaoZhuang/ColorFlow", cache_dir='./colorflow/') | |
print(model_global_path) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
weight_dtype = torch.float16 | |
# line model | |
line_model_path = model_global_path + '/LE/erika.pth' | |
line_model = res_skip() | |
line_model.load_state_dict(torch.load(line_model_path)) | |
line_model.eval() | |
line_model.cuda() | |
# screen model | |
global opt | |
opt = TestOptions().parse(model_global_path) | |
ScreenModel = create_model(opt, model_global_path) | |
ScreenModel.setup(opt) | |
ScreenModel.eval() | |
image_processor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda') | |
examples = [ | |
[ | |
"./assets/example_5/input.png", | |
["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"], | |
"GrayImage(ScreenStyle)", | |
"800x512", | |
0, | |
10 | |
], | |
[ | |
"./assets/example_4/input.jpg", | |
["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"], | |
"GrayImage(ScreenStyle)", | |
"640x640", | |
0, | |
10 | |
], | |
[ | |
"./assets/example_3/input.png", | |
["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"], | |
"GrayImage(ScreenStyle)", | |
"800x512", | |
0, | |
10 | |
], | |
[ | |
"./assets/example_2/input.png", | |
["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"], | |
"GrayImage(ScreenStyle)", | |
"800x512", | |
0, | |
10 | |
], | |
[ | |
"./assets/example_1/input.jpg", | |
["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"], | |
"Sketch", | |
"640x640", | |
0, | |
10 | |
], | |
[ | |
"./assets/example_0/input.jpg", | |
["./assets/example_0/ref1.jpg"], | |
"Sketch", | |
"640x640", | |
0, | |
10 | |
], | |
] | |
global pipeline | |
global MultiResNetModel | |
def load_ckpt(input_style): | |
global pipeline | |
global MultiResNetModel | |
if input_style == "Sketch": | |
ckpt_path = model_global_path + '/sketch/' | |
rank = 128 | |
pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS' | |
transformer = PixArtTransformer2DModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None | |
) | |
pixart_config = get_pixart_config() | |
ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path) | |
transformer_lora_config = LoraConfig( | |
r=rank, | |
lora_alpha=rank, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"] | |
) | |
transformer.add_adapter(transformer_lora_config) | |
ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu') | |
transformer.load_state_dict(ckpt_key_t, strict=False) | |
transformer.to('cuda', dtype=weight_dtype) | |
ColorGuider.to('cuda', dtype=weight_dtype) | |
pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
transformer=transformer, | |
colorguider=ColorGuider, | |
safety_checker=None, | |
revision=None, | |
variant=None, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to("cuda") | |
block_out_channels = [128, 128, 256, 512, 512] | |
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) | |
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False) | |
MultiResNetModel.to('cuda', dtype=weight_dtype) | |
elif input_style == "GrayImage(ScreenStyle)": | |
ckpt_path = model_global_path + '/GraySD/' | |
rank = 64 | |
pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5' | |
unet = UNet2DConditionModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None | |
) | |
ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path) | |
ColorGuider.to('cuda', dtype=weight_dtype) | |
unet.to('cuda', dtype=weight_dtype) | |
pipeline = ColorFlowSDPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
unet=unet, | |
colorguider=ColorGuider, | |
safety_checker=None, | |
revision=None, | |
variant=None, | |
torch_dtype=weight_dtype, | |
) | |
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) | |
unet_lora_config = LoraConfig( | |
r=rank, | |
lora_alpha=rank, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],#ff.net.0.proj ff.net.2 | |
) | |
pipeline.unet.add_adapter(unet_lora_config) | |
pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False) | |
pipeline = pipeline.to("cuda") | |
block_out_channels = [128, 128, 256, 512, 512] | |
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) | |
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False) | |
MultiResNetModel.to('cuda', dtype=weight_dtype) | |
global cur_input_style | |
cur_input_style = "Sketch" | |
load_ckpt(cur_input_style) | |
cur_input_style = "GrayImage(ScreenStyle)" | |
load_ckpt(cur_input_style) | |
def fix_random_seeds(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def process_multi_images(files): | |
images = [Image.open(file.name) for file in files] | |
imgs = [] | |
for i, img in enumerate(images): | |
imgs.append(img) | |
return imgs | |
def extract_lines(image): | |
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) | |
rows = int(np.ceil(src.shape[0] / 16)) * 16 | |
cols = int(np.ceil(src.shape[1] / 16)) * 16 | |
patch = np.ones((1, 1, rows, cols), dtype="float32") | |
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src | |
tensor = torch.from_numpy(patch).cuda() | |
with torch.no_grad(): | |
y = line_model(tensor) | |
yc = y.cpu().numpy()[0, 0, :, :] | |
yc[yc > 255] = 255 | |
yc[yc < 0] = 0 | |
outimg = yc[0:src.shape[0], 0:src.shape[1]] | |
outimg = outimg.astype(np.uint8) | |
outimg = Image.fromarray(outimg) | |
torch.cuda.empty_cache() | |
return outimg | |
def to_screen_image(input_image): | |
global opt | |
global ScreenModel | |
input_image = input_image.convert('RGB') | |
input_image = get_ScreenVAE_input(input_image, opt) | |
h = input_image['h'] | |
w = input_image['w'] | |
ScreenModel.set_input(input_image) | |
fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True) | |
images=fake_B2[:,:,:h,:w] | |
im = util.tensor2im(images) | |
image_pil = Image.fromarray(im) | |
torch.cuda.empty_cache() | |
return image_pil | |
def extract_line_image(query_image_, input_style, resolution): | |
if resolution == "640x640": | |
tar_width = 640 | |
tar_height = 640 | |
elif resolution == "512x800": | |
tar_width = 512 | |
tar_height = 800 | |
elif resolution == "800x512": | |
tar_width = 800 | |
tar_height = 512 | |
else: | |
gr.Info("Unsupported resolution") | |
query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5)) | |
if input_style == "GrayImage(ScreenStyle)": | |
extracted_line = to_screen_image(query_image) | |
extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5) | |
input_context = extracted_line | |
elif input_style == "Sketch": | |
query_image = query_image.convert('L').convert('RGB') | |
extracted_line = extract_lines(query_image) | |
extracted_line = extracted_line.convert('L').convert('RGB') | |
input_context = extracted_line | |
torch.cuda.empty_cache() | |
return input_context, extracted_line, input_context | |
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps): | |
if VAE_input is None or input_context is None: | |
gr.Info("Please preprocess the image first") | |
raise ValueError("Please preprocess the image first") | |
global cur_input_style | |
global pipeline | |
global MultiResNetModel | |
if input_style != cur_input_style: | |
gr.Info(f"Loading {input_style} model...") | |
load_ckpt(input_style) | |
cur_input_style = input_style | |
gr.Info(f"{input_style} model loaded") | |
reference_images = process_multi_images(reference_images) | |
fix_random_seeds(seed) | |
if resolution == "640x640": | |
tar_width = 640 | |
tar_height = 640 | |
elif resolution == "512x800": | |
tar_width = 512 | |
tar_height = 800 | |
elif resolution == "800x512": | |
tar_width = 800 | |
tar_height = 512 | |
else: | |
gr.Info("Unsupported resolution") | |
validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2)) | |
gr.Info("Image retrieval in progress...") | |
query_image_bw = process_image(input_context, int(tar_width), int(tar_height)) | |
query_image = query_image_bw.convert('RGB') | |
query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5)) | |
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images] | |
query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height) | |
reference_patches_pil = [] | |
for reference_image in reference_images: | |
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height) | |
combined_image = None | |
with torch.no_grad(): | |
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) | |
query_embeddings = image_encoder(clip_img).image_embeds | |
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil] | |
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) | |
reference_embeddings = image_encoder(clip_img).image_embeds | |
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1) | |
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist() | |
top_k = 3 | |
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices] | |
combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white') | |
combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2)) | |
idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]} | |
for i in range(2): | |
for j in range(2): | |
idx_list = idx_table[i * 2 + j] | |
for k in range(top_k): | |
ref_index = top_k_indices[i * 2 + j][k] | |
idx_y = idx_list[k][0] | |
idx_x = idx_list[k][1] | |
combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1)) | |
gr.Info("Model inference in progress...") | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
image = pipeline( | |
"manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator | |
).images[0] | |
gr.Info("Post-processing image...") | |
with torch.no_grad(): | |
width, height = image.size | |
new_width = width // 2 | |
new_height = height // 2 | |
left = (width - new_width) // 2 | |
top = (height - new_height) // 2 | |
right = left + new_width | |
bottom = top + new_height | |
center_crop = image.crop((left, top, right, bottom)) | |
up_img = center_crop.resize(query_image_vae.size) | |
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype) | |
query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype) | |
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True) | |
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True) | |
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))] | |
hidden_list = MultiResNetModel(hidden_list_double) | |
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0] | |
output[output > 1] = 1 | |
output[output < -1] = -1 | |
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB") | |
gr.Info("Colorization complete!") | |
torch.cuda.empty_cache() | |
return high_res_image, up_img, image, query_image_bw | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center;"> | |
<h1 style="text-align: center; font-size: 3em;">🎨 ColorFlow:</h1> | |
<h3 style="text-align: center; font-size: 1.8em;">Retrieval-Augmented Image Sequence Colorization</h3> | |
<p style="text-align: center; font-weight: bold;"> | |
<a href="https://zhuang2002.github.io/ColorFlow/">Project Page</a> | | |
<a href="https://arxiv.org/abs/">ArXiv Preprint</a> | | |
<a href="https://github.com/TencentARC/ColorFlow">GitHub Repository</a> | |
</p> | |
<p style="text-align: center; font-weight: bold;"> | |
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient. | |
</p> | |
<p style="text-align: left; font-size: 1.1em;"> | |
Welcome to the demo of <strong>ColorFlow</strong>. Follow the steps below to explore the capabilities of our model: | |
</p> | |
</div> | |
<div style="text-align: left; margin: 0 auto;"> | |
<ol style="font-size: 1.1em;"> | |
<li>Choose input style: GrayImage(ScreenStyle) or Sketch.</li> | |
<li>Upload your image: Use the 'Upload' button to select the image you want to colorize.</li> | |
<li>Preprocess the image: Click the 'Preprocess' button to decolorize the image.</li> | |
<li>Upload reference images: Upload multiple reference images to guide the colorization.</li> | |
<li>Set sampling parameters (optional): Adjust the settings and click the <b>Colorize</b> button.</li> | |
</ol> | |
<p> | |
⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine. | |
</p> | |
</div> | |
<div style="text-align: center;"> | |
<p style="text-align: center; font-weight: bold;"> | |
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。 | |
</p> | |
<p style="text-align: left; font-size: 1.1em;"> | |
欢迎使用 <strong>ColorFlow</strong> 演示。请按照以下步骤探索我们模型的能力: | |
</p> | |
</div> | |
<div style="text-align: left; margin: 0 auto;"> | |
<ol style="font-size: 1.1em;"> | |
<li>选择输入样式:灰度图(ScreenStyle)、线稿。</li> | |
<li>上传您的图像:使用“上传”按钮选择要上色的图像。</li> | |
<li>预处理图像:点击“预处理”按钮以去色图像。</li> | |
<li>上传参考图像:上传多张参考图像以指导上色。</li> | |
<li>设置采样参数(可选):调整设置并点击 <b>上色</b> 按钮。</li> | |
</ol> | |
<p> | |
⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。 | |
</p> | |
</div> | |
""" | |
) | |
VAE_input = gr.State() | |
input_context = gr.State() | |
# example_loading = gr.State(value=None) | |
with gr.Column(): | |
with gr.Row(): | |
input_style = gr.Radio(["GrayImage(ScreenStyle)", "Sketch"], label="Input Style", value="GrayImage(ScreenStyle)") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Image to Colorize") | |
resolution = gr.Radio(["640x640", "512x800", "800x512"], label="Select Resolution(Width*Height)", value="640x640") | |
extract_button = gr.Button("Preprocess (Decolorize)") | |
extracted_image = gr.Image(type="pil", label="Decolorized Result") | |
with gr.Row(): | |
reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple") | |
with gr.Column(): | |
output_gallery = gr.Gallery(label="Colorization Results", type="pil") | |
seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=4, maximum=100, value=10, step=1) | |
colorize_button = gr.Button("Colorize") | |
# progress_text = gr.Textbox(label="Progress", interactive=False) | |
extract_button.click( | |
extract_line_image, | |
inputs=[input_image, input_style, resolution], | |
outputs=[extracted_image, VAE_input, input_context] | |
) | |
colorize_button.click( | |
colorize_image, | |
inputs=[VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps], | |
outputs=output_gallery | |
) | |
with gr.Column(): | |
gr.Markdown("### Quick Examples") | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image, reference_images, input_style, resolution, seed, num_inference_steps], | |
label="Examples", | |
examples_per_page=6, | |
) | |
demo.launch(server_name="0.0.0.0", server_port=22348) |