Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import torch | |
from diffusers import ( | |
AutoPipelineForImage2Image, | |
AutoPipelineForInpainting, | |
AutoPipelineForText2Image, | |
ControlNetModel, | |
LCMScheduler, | |
StableDiffusionAdapterPipeline, | |
StableDiffusionControlNetPipeline, | |
StableDiffusionXLAdapterPipeline, | |
StableDiffusionXLControlNetPipeline, | |
T2IAdapter, | |
WuerstchenCombinedPipeline, | |
) | |
from diffusers.utils import load_image | |
sys.path.append(".") | |
from utils import ( # noqa: E402 | |
BASE_PATH, | |
PROMPT, | |
BenchmarkInfo, | |
benchmark_fn, | |
bytes_to_giga_bytes, | |
flush, | |
generate_csv_dict, | |
write_to_csv, | |
) | |
RESOLUTION_MAPPING = { | |
"Lykon/DreamShaper": (512, 512), | |
"lllyasviel/sd-controlnet-canny": (512, 512), | |
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024), | |
"TencentARC/t2iadapter_canny_sd14v1": (512, 512), | |
"TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024), | |
"stabilityai/stable-diffusion-2-1": (768, 768), | |
"stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024), | |
"stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024), | |
"stabilityai/sdxl-turbo": (512, 512), | |
} | |
class BaseBenchmak: | |
pipeline_class = None | |
def __init__(self, args): | |
super().__init__() | |
def run_inference(self, args): | |
raise NotImplementedError | |
def benchmark(self, args): | |
raise NotImplementedError | |
def get_result_filepath(self, args): | |
pipeline_class_name = str(self.pipe.__class__.__name__) | |
name = ( | |
args.ckpt.replace("/", "_") | |
+ "_" | |
+ pipeline_class_name | |
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" | |
) | |
filepath = os.path.join(BASE_PATH, name) | |
return filepath | |
class TextToImageBenchmark(BaseBenchmak): | |
pipeline_class = AutoPipelineForText2Image | |
def __init__(self, args): | |
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
if args.run_compile: | |
if not isinstance(pipe, WuerstchenCombinedPipeline): | |
pipe.unet.to(memory_format=torch.channels_last) | |
print("Run torch compile") | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None: | |
pipe.movq.to(memory_format=torch.channels_last) | |
pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True) | |
else: | |
print("Run torch compile") | |
pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True) | |
pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True) | |
pipe.set_progress_bar_config(disable=True) | |
self.pipe = pipe | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
) | |
def benchmark(self, args): | |
flush() | |
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") | |
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds. | |
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs. | |
benchmark_info = BenchmarkInfo(time=time, memory=memory) | |
pipeline_class_name = str(self.pipe.__class__.__name__) | |
flush() | |
csv_dict = generate_csv_dict( | |
pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info | |
) | |
filepath = self.get_result_filepath(args) | |
write_to_csv(filepath, csv_dict) | |
print(f"Logs written to: {filepath}") | |
flush() | |
class TurboTextToImageBenchmark(TextToImageBenchmark): | |
def __init__(self, args): | |
super().__init__(args) | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
guidance_scale=0.0, | |
) | |
class LCMLoRATextToImageBenchmark(TextToImageBenchmark): | |
lora_id = "latent-consistency/lcm-lora-sdxl" | |
def __init__(self, args): | |
super().__init__(args) | |
self.pipe.load_lora_weights(self.lora_id) | |
self.pipe.fuse_lora() | |
self.pipe.unload_lora_weights() | |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
def get_result_filepath(self, args): | |
pipeline_class_name = str(self.pipe.__class__.__name__) | |
name = ( | |
self.lora_id.replace("/", "_") | |
+ "_" | |
+ pipeline_class_name | |
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" | |
) | |
filepath = os.path.join(BASE_PATH, name) | |
return filepath | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
guidance_scale=1.0, | |
) | |
def benchmark(self, args): | |
flush() | |
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") | |
time = benchmark_fn(self.run_inference, self.pipe, args) # in seconds. | |
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs. | |
benchmark_info = BenchmarkInfo(time=time, memory=memory) | |
pipeline_class_name = str(self.pipe.__class__.__name__) | |
flush() | |
csv_dict = generate_csv_dict( | |
pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info | |
) | |
filepath = self.get_result_filepath(args) | |
write_to_csv(filepath, csv_dict) | |
print(f"Logs written to: {filepath}") | |
flush() | |
class ImageToImageBenchmark(TextToImageBenchmark): | |
pipeline_class = AutoPipelineForImage2Image | |
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg" | |
image = load_image(url).convert("RGB") | |
def __init__(self, args): | |
super().__init__(args) | |
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
image=self.image, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
) | |
class TurboImageToImageBenchmark(ImageToImageBenchmark): | |
def __init__(self, args): | |
super().__init__(args) | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
image=self.image, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
guidance_scale=0.0, | |
strength=0.5, | |
) | |
class InpaintingBenchmark(ImageToImageBenchmark): | |
pipeline_class = AutoPipelineForInpainting | |
mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png" | |
mask = load_image(mask_url).convert("RGB") | |
def __init__(self, args): | |
super().__init__(args) | |
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) | |
self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt]) | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
image=self.image, | |
mask_image=self.mask, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
) | |
class IPAdapterTextToImageBenchmark(TextToImageBenchmark): | |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png" | |
image = load_image(url) | |
def __init__(self, args): | |
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda") | |
pipe.load_ip_adapter( | |
args.ip_adapter_id[0], | |
subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models", | |
weight_name=args.ip_adapter_id[1], | |
) | |
if args.run_compile: | |
pipe.unet.to(memory_format=torch.channels_last) | |
print("Run torch compile") | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.set_progress_bar_config(disable=True) | |
self.pipe = pipe | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
ip_adapter_image=self.image, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
) | |
class ControlNetBenchmark(TextToImageBenchmark): | |
pipeline_class = StableDiffusionControlNetPipeline | |
aux_network_class = ControlNetModel | |
root_ckpt = "Lykon/DreamShaper" | |
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png" | |
image = load_image(url).convert("RGB") | |
def __init__(self, args): | |
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) | |
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
pipe.set_progress_bar_config(disable=True) | |
self.pipe = pipe | |
if args.run_compile: | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.controlnet.to(memory_format=torch.channels_last) | |
print("Run torch compile") | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) | |
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) | |
def run_inference(self, pipe, args): | |
_ = pipe( | |
prompt=PROMPT, | |
image=self.image, | |
num_inference_steps=args.num_inference_steps, | |
num_images_per_prompt=args.batch_size, | |
) | |
class ControlNetSDXLBenchmark(ControlNetBenchmark): | |
pipeline_class = StableDiffusionXLControlNetPipeline | |
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" | |
def __init__(self, args): | |
super().__init__(args) | |
class T2IAdapterBenchmark(ControlNetBenchmark): | |
pipeline_class = StableDiffusionAdapterPipeline | |
aux_network_class = T2IAdapter | |
root_ckpt = "Lykon/DreamShaper" | |
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png" | |
image = load_image(url).convert("L") | |
def __init__(self, args): | |
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) | |
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
pipe.set_progress_bar_config(disable=True) | |
self.pipe = pipe | |
if args.run_compile: | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.adapter.to(memory_format=torch.channels_last) | |
print("Run torch compile") | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True) | |
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) | |
class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark): | |
pipeline_class = StableDiffusionXLAdapterPipeline | |
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" | |
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png" | |
image = load_image(url) | |
def __init__(self, args): | |
super().__init__(args) | |