ttengwang
share ocr_reader to accelerate inferenec
108f2df
import torch
from PIL import Image
import numpy as np
from typing import Union
from transformers import AutoProcessor, Blip2ForConditionalGeneration
from caption_anything.utils.utils import is_platform_win, load_image
from .base_captioner import BaseCaptioner
import time
class BLIP2Captioner(BaseCaptioner):
def __init__(self, device, dialogue: bool = False, enable_filter: bool = False):
super().__init__(device, enable_filter)
self.device = device
self.dialogue = dialogue
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
if is_platform_win():
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="sequential", torch_dtype=self.torch_dtype)
else:
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map='sequential', load_in_8bit=True)
@torch.no_grad()
def inference(self,
image: Union[np.ndarray, Image.Image, str],
filter=False,
args={}):
args['return_ppl'] = args.get('return_ppl', False)
args['text_prompt'] = args.get('text_prompt', 'Question: what does the image show? Answer:')
args['reference_caption'] = args.get('reference_caption', [])
image = load_image(image, return_type="pil")
result = {}
if not self.dialogue:
inputs = self.processor(image, text = args['text_prompt'], return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs, return_dict_in_generate=True, output_scores=True, max_new_tokens=50)
caption = self.processor.decode(out.sequences[0], skip_special_tokens=True).strip()
if self.enable_filter and filter:
print('reference caption: {}, caption: {}'.format(args['reference_caption'], caption))
clip_score = self.filter_caption(image, caption, args['reference_caption'])
result['clip_score'] = clip_score
if args['return_ppl']:
ppl_score = torch.stack(out.scores, dim=1).softmax(dim=2).log().max(dim=2)[0].sum(dim=1)[0]
result['ppl_score'] = ppl_score.item()
print(f"\nProcessed ImageCaptioning by BLIP2Captioner, Output Text: {caption}")
result['caption'] = caption
return result
else:
context = []
template = "Question: {} Answer: {}."
while(True):
input_texts = input()
if input_texts == 'end':
break
prompt = " ".join([template.format(context[i][0], context[i][1]) for i in range(len(context))]) + " Question: " + input_texts + " Answer:"
inputs = self.processor(image, text = prompt, return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs, max_new_tokens=50)
captions = self.processor.decode(out[0], skip_special_tokens=True).strip()
context.append((input_texts, captions))
result['caption'] = captions
return result
if __name__ == '__main__':
dialogue = False
model = BLIP2Captioner(device='cuda:4', dialogue = dialogue, cache_dir = '/nvme-ssd/fjj/Caption-Anything/model_cache')
image_path = 'test_images/img2.jpg'
seg_mask = np.zeros((224,224))
seg_mask[50:200, 50:200] = 1
print(f'process image {image_path}')
print(model.inference_seg(image_path, seg_mask))