Caption-Anything / app_old.py
ttengwang
update lastest
10240e0
raw
history blame
11.3 kB
from io import BytesIO
import string
import gradio as gr
import requests
from caption_anything import CaptionAnything
import torch
import json
import sys
import argparse
from caption_anything import parse_augment
import os
# download sam checkpoint if not downloaded
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
return filepath
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
folder = "segmenter"
filename = "sam_vit_h_4b8939.pth"
title = """<h1 align="center">Caption-Anything</h1>"""
description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them.
<br> <strong>Code</strong>: GitHub repo: <a href='https://github.com/ttengwang/Caption-Anything' target='_blank'></a>
"""
examples = [
["test_img/img2.jpg", "[[1000, 700, 1]]"]
]
args = parse_augment()
def get_prompt(chat_input, click_state):
points = click_state[0]
labels = click_state[1]
inputs = json.loads(chat_input)
for input in inputs:
points.append(input[:2])
labels.append(input[2])
prompt = {
"prompt_type":["click"],
"input_point":points,
"input_label":labels,
"multimask_output":"True",
}
return prompt
def inference_seg_cap(image_input, chat_input, language, sentiment, factuality, length, state, click_state):
controls = {'length': length,
'sentiment': sentiment,
'factuality': factuality,
'language': language}
prompt = get_prompt(chat_input, click_state)
print('prompt: ', prompt, 'controls: ', controls)
out = model.inference(image_input, prompt, controls)
state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))]
for k, v in out['generated_captions'].items():
state = state + [(f'{k}: {v}', None)]
click_state[2].append(out['generated_captions']['raw_caption'])
image_output_mask = out['mask_save_path']
image_output_crop = out['crop_save_path']
return state, state, click_state, image_output_mask, image_output_crop
def upload_callback(image_input, state):
state = state + [('Image size: ' + str(image_input.size), None)]
return state
# get coordinate in format [[x,y,positive/negative]]
def get_select_coords(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt: gr.SelectData):
print("point_prompt: ", point_prompt)
if point_prompt == 'Positive Point':
coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
else:
coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1]))
return (coordinate,) + inference_seg_cap(image_input, coordinate, language, sentiment, factuality, length, state, click_state)
def chat_with_points(chat_input, click_state, state):
points, labels, captions = click_state
# point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\n. Now begin chatting! Human: {chat_input}\nAI: "
# "The image is of width {width} and height {height}."
point_chat_prompt = "a) Revised prompt: I am an AI trained to chat with you about an image based on specific points (w, h) you provide, along with their visual descriptions. Please note that (0, 0) refers to the top-left corner of the image, w refers to the width, and h refers to the height. Here are the points and their descriptions you've given me: {points_with_caps}. Now, let's chat! Human: {chat_input} AI:"
prev_visual_context = ""
pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1]
prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n'
chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input})
response = model.text_refiner.llm(chat_prompt)
state = state + [(chat_input, response)]
return state, state
def init_openai_api_key(api_key):
os.environ['OPENAI_API_KEY'] = api_key
global model
model = CaptionAnything(args)
css='''
#image_upload{min-height:200px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 200px}
'''
with gr.Blocks(css=css) as iface:
state = gr.State([])
click_state = gr.State([[],[],[]])
caption_state = gr.State([[]])
gr.Markdown(title)
gr.Markdown(description)
with gr.Column():
openai_api_key = gr.Textbox(
placeholder="Input your openAI API key and press Enter",
show_label=False,
lines=1,
type="password",
)
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key])
with gr.Row():
with gr.Column(scale=0.7):
image_input = gr.Image(type="pil", interactive=True, label="Image", elem_id="image_upload").style(height=260,scale=1.0)
with gr.Row(scale=0.7):
point_prompt = gr.Radio(
choices=["Positive Point", "Negative Point"],
value="Positive Point",
label="Points",
interactive=True,
)
# with gr.Row():
language = gr.Radio(
choices=["English", "Chinese", "French", "Spanish", "Arabic", "Portuguese","Cantonese"],
value="English",
label="Language",
interactive=True,
)
sentiment = gr.Radio(
choices=["Positive", "Natural", "Negative"],
value="Natural",
label="Sentiment",
interactive=True,
)
factuality = gr.Radio(
choices=["Factual", "Imagination"],
value="Factual",
label="Factuality",
interactive=True,
)
length = gr.Slider(
minimum=5,
maximum=100,
value=10,
step=1,
interactive=True,
label="Length",
)
with gr.Column(scale=1.5):
with gr.Row():
image_output_mask= gr.Image(type="pil", interactive=False, label="Mask").style(height=260,scale=1.0)
image_output_crop= gr.Image(type="pil", interactive=False, label="Cropped Image by Mask", show_progress=False).style(height=260,scale=1.0)
chatbot = gr.Chatbot(label="Chat Output",).style(height=450,scale=0.5)
with gr.Row():
with gr.Column(scale=0.7):
prompt_input = gr.Textbox(lines=1, label="Input Prompt (A list of points like : [[100, 200, 1], [200,300,0]])")
prompt_input.submit(
inference_seg_cap,
[
image_input,
prompt_input,
language,
sentiment,
factuality,
length,
state,
click_state
],
[chatbot, state, click_state, image_output_mask, image_output_crop],
show_progress=False
)
image_input.upload(
upload_callback,
[image_input, state],
[chatbot]
)
with gr.Row():
clear_button = gr.Button(value="Clear Click", interactive=True)
clear_button.click(
lambda: ("", [[], [], []], None, None),
[],
[prompt_input, click_state, image_output_mask, image_output_crop],
queue=False,
show_progress=False
)
clear_button = gr.Button(value="Clear", interactive=True)
clear_button.click(
lambda: ("", [], [], [[], [], []], None, None),
[],
[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop],
queue=False,
show_progress=False
)
submit_button = gr.Button(
value="Submit", interactive=True, variant="primary"
)
submit_button.click(
inference_seg_cap,
[
image_input,
prompt_input,
language,
sentiment,
factuality,
length,
state,
click_state
],
[chatbot, state, click_state, image_output_mask, image_output_crop],
show_progress=False
)
# select coordinate
image_input.select(
get_select_coords,
inputs=[image_input,point_prompt,language,sentiment,factuality,length,state,click_state],
outputs=[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop],
show_progress=False
)
image_input.change(
lambda: ("", [], [[], [], []]),
[],
[chatbot, state, click_state],
queue=False,
)
with gr.Column(scale=1.5):
chat_input = gr.Textbox(lines=1, label="Chat Input")
chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state])
examples = gr.Examples(
examples=examples,
inputs=[image_input, prompt_input],
)
iface.queue(concurrency_count=1, api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)