Spaces:
Build error
Build error
| ##!/usr/bin/python3 | |
| # -*- coding: utf-8 -*- | |
| import os | |
| print("Installing correct gradio version...") | |
| os.system("pip uninstall -y gradio") | |
| os.system("pip install gradio==3.50.0") | |
| print("Installing Finished!") | |
| ##!/usr/bin/python3 | |
| # -*- coding: utf-8 -*- | |
| import gradio as gr | |
| import os | |
| import cv2 | |
| from PIL import Image | |
| import numpy as np | |
| from segment_anything import SamPredictor, sam_model_registry | |
| import torch | |
| from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler | |
| import random | |
| mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda") | |
| mobile_sam.eval() | |
| mobile_predictor = SamPredictor(mobile_sam) | |
| colors = [(255, 0, 0), (0, 255, 0)] | |
| markers = [1, 5] | |
| # - - - - - examples - - - - - # | |
| image_examples = [ | |
| ["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, [], [Image.open("examples/brushnet/src/test_result.png")]], | |
| ["examples/brushnet/src/example_1.jpg", "A man in Chinese traditional clothes", "examples/brushnet/src/example_1_mask.jpg", 1, [], [Image.open("examples/brushnet/src/example_1_result.png")]], | |
| ["examples/brushnet/src/example_3.jpg", "a cut toy on the table", "examples/brushnet/src/example_3_mask.jpg", 2, [], [Image.open("examples/brushnet/src/example_3_result.png")]], | |
| ["examples/brushnet/src/example_4.jpeg", "a car driving in the wild", "examples/brushnet/src/example_4_mask.jpg", 3, [], [Image.open("examples/brushnet/src/example_4_result.png")]], | |
| ["examples/brushnet/src/example_5.jpg", "a charming woman wearing dress standing in the dark forest", "examples/brushnet/src/example_5_mask.jpg", 4, [], [Image.open("examples/brushnet/src/example_5_result.png")]], | |
| ] | |
| # choose the base model here | |
| base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE" | |
| # base_model_path = "runwayml/stable-diffusion-v1-5" | |
| # input brushnet ckpt path | |
| brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt" | |
| brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16) | |
| pipe = StableDiffusionBrushNetPipeline.from_pretrained( | |
| base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False | |
| ) | |
| # speed up diffusion process with faster scheduler and memory optimization | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| # remove following line if xformers is not installed or when using Torch 2.0. | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| # memory optimization. | |
| pipe.enable_model_cpu_offload() | |
| def resize_image(input_image, resolution): | |
| H, W, C = input_image.shape | |
| H = float(H) | |
| W = float(W) | |
| k = float(resolution) / min(H, W) | |
| H *= k | |
| W *= k | |
| H = int(np.round(H / 64.0)) * 64 | |
| W = int(np.round(W / 64.0)) * 64 | |
| img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
| return img | |
| def process(input_image, | |
| original_image, | |
| original_mask, | |
| input_mask, | |
| selected_points, | |
| prompt, | |
| negative_prompt, | |
| blended, | |
| invert_mask, | |
| control_strength, | |
| seed, | |
| randomize_seed, | |
| guidance_scale, | |
| num_inference_steps): | |
| if original_image is None: | |
| raise gr.Error('Please upload the input image') | |
| if (original_mask is None or len(selected_points)==0) and input_mask is None: | |
| raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image") | |
| # load example image | |
| if isinstance(original_image, int): | |
| image_name = image_examples[original_image][0] | |
| original_image = cv2.imread(image_name) | |
| original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) | |
| if input_mask is not None: | |
| H,W=original_image.shape[:2] | |
| original_mask = cv2.resize(input_mask, (W, H)) | |
| else: | |
| original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8) | |
| if invert_mask: | |
| original_mask=255-original_mask | |
| mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis] | |
| masked_image = original_image * (1-mask) | |
| init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB") | |
| mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB") | |
| generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed) | |
| image = pipe( | |
| [prompt]*2, | |
| init_image, | |
| mask_image, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| brushnet_conditioning_scale=float(control_strength), | |
| negative_prompt=[negative_prompt]*2, | |
| ).images | |
| if blended: | |
| if control_strength<1.0: | |
| raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed') | |
| blended_image=[] | |
| # blur, you can adjust the parameters for better performance | |
| mask_blurred = cv2.GaussianBlur(mask*255, (21, 21), 0)/255 | |
| mask_blurred = mask_blurred[:,:,np.newaxis] | |
| mask = 1-(1-mask) * (1-mask_blurred) | |
| for image_i in image: | |
| image_np=np.array(image_i) | |
| image_pasted=original_image * (1-mask) + image_np*mask | |
| image_pasted=image_pasted.astype(image_np.dtype) | |
| blended_image.append(Image.fromarray(image_pasted)) | |
| image=blended_image | |
| return image | |
| block = gr.Blocks( | |
| theme=gr.themes.Soft( | |
| radius_size=gr.themes.sizes.radius_none, | |
| text_size=gr.themes.sizes.text_md | |
| ) | |
| ).queue() | |
| with block: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML(f""" | |
| <div style="text-align: center;"> | |
| <h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1> | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <a href=""></a> | |
| <a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a> | |
| <a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a> | |
| </div> | |
| </br> | |
| </div> | |
| """) | |
| with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"): | |
| with gr.Row(equal_height=True): | |
| gr.Markdown(""" | |
| - ⭐️ <b>step1: </b>Upload or select one image from Example | |
| - ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change. | |
| - ⭐️ <b>step3: </b>Input prompt for generating new contents | |
| - ⭐️ <b>step4: </b>Click Run button | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Column(elem_id="Input"): | |
| with gr.Row(): | |
| with gr.Tabs(elem_classes=["feedback"]): | |
| with gr.TabItem("Input Image"): | |
| input_image = gr.Image(type="numpy", label="input",scale=2, height=640) | |
| original_image = gr.State(value=None,label="index") | |
| original_mask = gr.State(value=None) | |
| selected_points = gr.State([],label="select points") | |
| with gr.Row(elem_id="Seg"): | |
| radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2) | |
| undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1) | |
| prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1) | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| max_lines=5, | |
| placeholder="Please input your negative prompt", | |
| value='ugly, low quality',lines=1 | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| blending = gr.Checkbox(label="Blurred Blending", value=False) | |
| invert_mask = gr.Checkbox(label="Invert Mask", value=True) | |
| run_button = gr.Button("Run",elem_id="btn") | |
| with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"): | |
| control_strength = gr.Slider( | |
| label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01 | |
| ) | |
| with gr.Group(): | |
| seed = gr.Slider( | |
| label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204 | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
| with gr.Group(): | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=1, | |
| maximum=12, | |
| step=0.1, | |
| value=12, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=50, | |
| ) | |
| with gr.Row(elem_id="Image"): | |
| with gr.Tabs(elem_classes=["feedback1"]): | |
| with gr.TabItem("User-specified Mask Image (Optional)"): | |
| input_mask = gr.Image(type="numpy", label="Mask Image", height=640) | |
| with gr.Column(): | |
| with gr.Tabs(elem_classes=["feedback"]): | |
| with gr.TabItem("Outputs"): | |
| result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) | |
| with gr.Row(): | |
| def process_example(input_image, prompt, input_mask, original_image, selected_points,result_gallery): # | |
| return input_image, prompt, input_mask, original_image, [], result_gallery | |
| example = gr.Examples( | |
| label="Input Example", | |
| examples=image_examples, | |
| inputs=[input_image, prompt, input_mask, original_image, selected_points,result_gallery], | |
| outputs=[input_image, prompt, input_mask, original_image, selected_points], | |
| fn=process_example, | |
| run_on_click=True, | |
| examples_per_page=10 | |
| ) | |
| # once user upload an image, the original image is stored in `original_image` | |
| def store_img(img): | |
| # image upload is too slow | |
| if min(img.shape[0], img.shape[1]) > 512: | |
| img = resize_image(img, 512) | |
| if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0: | |
| raise gr.Error('image aspect ratio cannot be larger than 2.0') | |
| return img, img, [], None # when new image is uploaded, `selected_points` should be empty | |
| input_image.upload( | |
| store_img, | |
| [input_image], | |
| [input_image, original_image, selected_points] | |
| ) | |
| # user click the image to get points, and show the points on the image | |
| def segmentation(img, sel_pix): | |
| # online show seg mask | |
| points = [] | |
| labels = [] | |
| for p, l in sel_pix: | |
| points.append(p) | |
| labels.append(l) | |
| mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img)) | |
| with torch.no_grad(): | |
| masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False) | |
| output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255 | |
| for i in range(3): | |
| output_mask[masks[0] == True, i] = 0.0 | |
| mask_all = np.ones((masks.shape[1], masks.shape[2], 3)) | |
| color_mask = np.random.random((1, 3)).tolist()[0] | |
| for i in range(3): | |
| mask_all[masks[0] == True, i] = color_mask[i] | |
| masked_img = img / 255 * 0.3 + mask_all * 0.7 | |
| masked_img = masked_img*255 | |
| ## draw points | |
| for point, label in sel_pix: | |
| cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5) | |
| return masked_img, output_mask | |
| def get_point(img, sel_pix, point_type, evt: gr.SelectData): | |
| if point_type == 'foreground': | |
| sel_pix.append((evt.index, 1)) # append the foreground_point | |
| elif point_type == 'background': | |
| sel_pix.append((evt.index, 0)) # append the background_point | |
| else: | |
| sel_pix.append((evt.index, 1)) # default foreground_point | |
| if isinstance(img, int): | |
| image_name = image_examples[img][0] | |
| img = cv2.imread(image_name) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| # online show seg mask | |
| masked_img, output_mask = segmentation(img, sel_pix) | |
| return masked_img.astype(np.uint8), output_mask | |
| input_image.select( | |
| get_point, | |
| [original_image, selected_points, radio], | |
| [input_image, original_mask], | |
| ) | |
| # undo the selected point | |
| def undo_points(orig_img, sel_pix): | |
| # draw points | |
| output_mask = None | |
| if len(sel_pix) != 0: | |
| if isinstance(orig_img, int): # if orig_img is int, the image if select from examples | |
| temp = cv2.imread(image_examples[orig_img][0]) | |
| temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB) | |
| else: | |
| temp = orig_img.copy() | |
| sel_pix.pop() | |
| # online show seg mask | |
| if len(sel_pix) !=0: | |
| temp, output_mask = segmentation(temp, sel_pix) | |
| return temp.astype(np.uint8), output_mask | |
| else: | |
| gr.Error("Nothing to Undo") | |
| undo_button.click( | |
| undo_points, | |
| [original_image, selected_points], | |
| [input_image, original_mask] | |
| ) | |
| ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps] | |
| run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
| block.launch() |