filter feature set
Browse files- app.py +29 -13
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +5 -2
app.py
CHANGED
@@ -70,6 +70,7 @@ def update_table(
|
|
70 |
columns: list,
|
71 |
phenotypes: list,
|
72 |
metrics: list,
|
|
|
73 |
nb_shots: list,
|
74 |
type_query: list,
|
75 |
precision_query: str,
|
@@ -77,7 +78,7 @@ def update_table(
|
|
77 |
show_deleted: bool,
|
78 |
query: str,
|
79 |
):
|
80 |
-
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, nb_shots)
|
81 |
filtered_df = filter_queries(query, filtered_df)
|
82 |
df = select_columns(filtered_df, columns, phenotypes, metrics)
|
83 |
return df
|
@@ -91,6 +92,7 @@ def select_columns(df: pd.DataFrame, columns: list, phenotypes: list, metrics:li
|
|
91 |
always_here_cols = [
|
92 |
AutoEvalColumn.model_type_symbol.name,
|
93 |
AutoEvalColumn.model.name,
|
|
|
94 |
AutoEvalColumn.nb_shots.name,
|
95 |
]
|
96 |
|
@@ -125,7 +127,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
125 |
|
126 |
|
127 |
def filter_models(
|
128 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, nb_shots: list) -> pd.DataFrame:
|
129 |
# Show all models
|
130 |
if show_deleted:
|
131 |
filtered_df = df
|
@@ -137,6 +139,7 @@ def filter_models(
|
|
137 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
138 |
if -1 not in nb_shots:
|
139 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.nb_shots.name].isin(nb_shots)]
|
|
|
140 |
|
141 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
142 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
@@ -155,6 +158,12 @@ with demo:
|
|
155 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
156 |
with gr.Row():
|
157 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
with gr.Row():
|
159 |
with gr.Column(min_width=320):
|
160 |
shown_phenotypes = gr.CheckboxGroup(
|
@@ -173,6 +182,11 @@ with demo:
|
|
173 |
for c in fields(AutoEvalColumn)
|
174 |
if not c.hidden and not c.never_hidden and c.is_task
|
175 |
])),
|
|
|
|
|
|
|
|
|
|
|
176 |
label="Select metrics to show",
|
177 |
elem_id="metric-select",
|
178 |
interactive=True,
|
@@ -193,18 +207,23 @@ with demo:
|
|
193 |
elem_id="column-select",
|
194 |
interactive=True,
|
195 |
)
|
196 |
-
with gr.Column(min_width=320):
|
197 |
with gr.Row():
|
198 |
-
|
199 |
-
|
200 |
-
show_label=False,
|
201 |
-
elem_id="search-bar",
|
202 |
)
|
|
|
203 |
with gr.Column(min_width=320):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
filter_nb_shots = gr.CheckboxGroup(
|
205 |
label="Number of shots",
|
206 |
choices=[("Zero-shot", 0), ("10-shot", 10), ("All", -1)],
|
207 |
-
value=[
|
208 |
interactive=True,
|
209 |
elem_id="filter-nb-shots",
|
210 |
)
|
@@ -229,10 +248,6 @@ with demo:
|
|
229 |
interactive=True,
|
230 |
elem_id="filter-columns-size",
|
231 |
)
|
232 |
-
with gr.Row():
|
233 |
-
deleted_models_visibility = gr.Checkbox(
|
234 |
-
value=True, label="Show gated/private/deleted models", interactive=True
|
235 |
-
)
|
236 |
|
237 |
leaderboard_table = gr.components.Dataframe(
|
238 |
value=leaderboard_df[
|
@@ -274,7 +289,7 @@ with demo:
|
|
274 |
],
|
275 |
leaderboard_table,
|
276 |
)
|
277 |
-
for selector in [shown_phenotypes, shown_metrics, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, filter_nb_shots]:
|
278 |
selector.change(
|
279 |
update_table,
|
280 |
[
|
@@ -282,6 +297,7 @@ with demo:
|
|
282 |
shown_columns,
|
283 |
shown_phenotypes,
|
284 |
shown_metrics,
|
|
|
285 |
filter_nb_shots,
|
286 |
filter_columns_type,
|
287 |
filter_columns_precision,
|
|
|
70 |
columns: list,
|
71 |
phenotypes: list,
|
72 |
metrics: list,
|
73 |
+
feature_sets: list,
|
74 |
nb_shots: list,
|
75 |
type_query: list,
|
76 |
precision_query: str,
|
|
|
78 |
show_deleted: bool,
|
79 |
query: str,
|
80 |
):
|
81 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, feature_sets, nb_shots)
|
82 |
filtered_df = filter_queries(query, filtered_df)
|
83 |
df = select_columns(filtered_df, columns, phenotypes, metrics)
|
84 |
return df
|
|
|
92 |
always_here_cols = [
|
93 |
AutoEvalColumn.model_type_symbol.name,
|
94 |
AutoEvalColumn.model.name,
|
95 |
+
AutoEvalColumn.feature_set.name,
|
96 |
AutoEvalColumn.nb_shots.name,
|
97 |
]
|
98 |
|
|
|
127 |
|
128 |
|
129 |
def filter_models(
|
130 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, feature_sets: list, nb_shots: list) -> pd.DataFrame:
|
131 |
# Show all models
|
132 |
if show_deleted:
|
133 |
filtered_df = df
|
|
|
139 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
140 |
if -1 not in nb_shots:
|
141 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.nb_shots.name].isin(nb_shots)]
|
142 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.feature_set.name].isin(feature_sets)]
|
143 |
|
144 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
145 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
158 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
+
with gr.Row():
|
162 |
+
search_bar = gr.Textbox(
|
163 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
164 |
+
show_label=False,
|
165 |
+
elem_id="search-bar",
|
166 |
+
)
|
167 |
with gr.Row():
|
168 |
with gr.Column(min_width=320):
|
169 |
shown_phenotypes = gr.CheckboxGroup(
|
|
|
182 |
for c in fields(AutoEvalColumn)
|
183 |
if not c.hidden and not c.never_hidden and c.is_task
|
184 |
])),
|
185 |
+
value=sorted(set([
|
186 |
+
c.task.value.metric_name
|
187 |
+
for c in fields(AutoEvalColumn)
|
188 |
+
if not c.hidden and not c.never_hidden and c.is_task
|
189 |
+
])),
|
190 |
label="Select metrics to show",
|
191 |
elem_id="metric-select",
|
192 |
interactive=True,
|
|
|
207 |
elem_id="column-select",
|
208 |
interactive=True,
|
209 |
)
|
|
|
210 |
with gr.Row():
|
211 |
+
deleted_models_visibility = gr.Checkbox(
|
212 |
+
value=True, label="Show gated/private/deleted models", interactive=True
|
|
|
|
|
213 |
)
|
214 |
+
with gr.Column(min_width=320):
|
215 |
with gr.Column(min_width=320):
|
216 |
+
filter_features = gr.CheckboxGroup(
|
217 |
+
label="Features Set",
|
218 |
+
choices=[("Baseline (age, sex, BMI)", "baseline"), ("Expanded (age, sex, BMI, HDL, LDL, total-cholesterol, triglycerides, diastolic-blood-pressure, smoking-status, snoring, insomnia, daytime-napping, sleep-duration, chronotype)", "expanded")],
|
219 |
+
value=["baseline"],
|
220 |
+
interactive=True,
|
221 |
+
elem_id="filter-feature-set",
|
222 |
+
)
|
223 |
filter_nb_shots = gr.CheckboxGroup(
|
224 |
label="Number of shots",
|
225 |
choices=[("Zero-shot", 0), ("10-shot", 10), ("All", -1)],
|
226 |
+
value=[0],
|
227 |
interactive=True,
|
228 |
elem_id="filter-nb-shots",
|
229 |
)
|
|
|
248 |
interactive=True,
|
249 |
elem_id="filter-columns-size",
|
250 |
)
|
|
|
|
|
|
|
|
|
251 |
|
252 |
leaderboard_table = gr.components.Dataframe(
|
253 |
value=leaderboard_df[
|
|
|
289 |
],
|
290 |
leaderboard_table,
|
291 |
)
|
292 |
+
for selector in [shown_phenotypes, shown_metrics, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, filter_nb_shots, filter_features]:
|
293 |
selector.change(
|
294 |
update_table,
|
295 |
[
|
|
|
297 |
shown_columns,
|
298 |
shown_phenotypes,
|
299 |
shown_metrics,
|
300 |
+
filter_features,
|
301 |
filter_nb_shots,
|
302 |
filter_columns_type,
|
303 |
filter_columns_precision,
|
src/display/utils.py
CHANGED
@@ -30,6 +30,7 @@ auto_eval_column_dict = []
|
|
30 |
# Init
|
31 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
32 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
|
|
33 |
auto_eval_column_dict.append(["nb_shots", ColumnContent, ColumnContent("#Shots", "number", True, never_hidden=True)])
|
34 |
#Scores
|
35 |
auto_eval_column_dict.append(["average_auroc", ColumnContent, ColumnContent("Average AUROC ⬆️", "number", True)])
|
|
|
30 |
# Init
|
31 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
32 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
33 |
+
auto_eval_column_dict.append(["feature_set", ColumnContent, ColumnContent("Feature Set", "str", True, never_hidden=True)])
|
34 |
auto_eval_column_dict.append(["nb_shots", ColumnContent, ColumnContent("#Shots", "number", True, never_hidden=True)])
|
35 |
#Scores
|
36 |
auto_eval_column_dict.append(["average_auroc", ColumnContent, ColumnContent("Average AUROC ⬆️", "number", True)])
|
src/leaderboard/read_evals.py
CHANGED
@@ -22,7 +22,8 @@ class EvalResult:
|
|
22 |
revision: str # commit hash, "" if main
|
23 |
results: dict
|
24 |
raw_data: dict
|
25 |
-
nb_shots: int
|
|
|
26 |
precision: Precision = Precision.Unknown
|
27 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
28 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
@@ -46,8 +47,8 @@ class EvalResult:
|
|
46 |
model = full_model.split("/")[1]
|
47 |
precision = Precision.from_str(config.get("precision"))
|
48 |
revision = config.get("revision", "")
|
49 |
-
feature_set = config.get("feature_set", "Unknown")
|
50 |
nb_shots = config.get("nb_shots", None)
|
|
|
51 |
model_type = ModelType.from_str(config.get("model_type", ""))
|
52 |
weight_type = WeightType[config.get("weight_type", "Original")]
|
53 |
license = config.get("license", "?")
|
@@ -83,6 +84,7 @@ class EvalResult:
|
|
83 |
results=results,
|
84 |
raw_data=data,
|
85 |
nb_shots=nb_shots,
|
|
|
86 |
precision=precision,
|
87 |
revision=revision,
|
88 |
still_on_hub=still_on_hub,
|
@@ -101,6 +103,7 @@ class EvalResult:
|
|
101 |
average_auprc = np.mean(np.array([d["metrics"]["mean_auprc"] for d in self.raw_data["results"].values() if "mean_auprc" in d["metrics"].keys()]))
|
102 |
data_dict = {
|
103 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
104 |
AutoEvalColumn.nb_shots.name: self.nb_shots,
|
105 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
106 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
|
|
22 |
revision: str # commit hash, "" if main
|
23 |
results: dict
|
24 |
raw_data: dict
|
25 |
+
nb_shots: int
|
26 |
+
feature_set: str
|
27 |
precision: Precision = Precision.Unknown
|
28 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
29 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
|
47 |
model = full_model.split("/")[1]
|
48 |
precision = Precision.from_str(config.get("precision"))
|
49 |
revision = config.get("revision", "")
|
|
|
50 |
nb_shots = config.get("nb_shots", None)
|
51 |
+
feature_set = config.get("feature_set", None)
|
52 |
model_type = ModelType.from_str(config.get("model_type", ""))
|
53 |
weight_type = WeightType[config.get("weight_type", "Original")]
|
54 |
license = config.get("license", "?")
|
|
|
84 |
results=results,
|
85 |
raw_data=data,
|
86 |
nb_shots=nb_shots,
|
87 |
+
feature_set=feature_set,
|
88 |
precision=precision,
|
89 |
revision=revision,
|
90 |
still_on_hub=still_on_hub,
|
|
|
103 |
average_auprc = np.mean(np.array([d["metrics"]["mean_auprc"] for d in self.raw_data["results"].values() if "mean_auprc" in d["metrics"].keys()]))
|
104 |
data_dict = {
|
105 |
"eval_name": self.eval_name, # not a column, just a save name,
|
106 |
+
AutoEvalColumn.feature_set.name: self.feature_set,
|
107 |
AutoEvalColumn.nb_shots.name: self.nb_shots,
|
108 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
109 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|