TemryL's picture
mask wip tab
0f70ea4
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
generate_column_name
)
# from src.display.plot_curves import plot_curves
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, HF_TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from dotenv import load_dotenv
load_dotenv()
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=HF_TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=HF_TOKEN
)
except Exception:
restart_space()
results, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS)
leaderboard_df = original_df.copy()
leaderboard_df.to_csv("leaderboard.csv", index=False)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
phenotypes: list,
metrics: list,
feature_sets: list,
nb_shots: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, feature_sets, nb_shots)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns, phenotypes, metrics)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list, phenotypes: list, metrics:list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
AutoEvalColumn.feature_set.name,
AutoEvalColumn.nb_shots.name,
]
task_cols = []
for phenotype in phenotypes:
for metric in metrics:
task_cols.append(generate_column_name(phenotype, metric))
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + sorted(task_cols)
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, feature_sets: list, nb_shots: list) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
if -1 not in nb_shots:
filtered_df = filtered_df.loc[df[AutoEvalColumn.nb_shots.name].isin(nb_shots)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.feature_set.name].isin(feature_sets)]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
def format_model_sample(sample):
return f"{sample[0]}, {sample[1]}, {sample[2]}-shots"
def update_selected_models(selected_models, sample):
sample_str = format_model_sample(sample)
selected_models.append(sample_str)
return selected_models
MODELS = [
["Model A", "Feature Set 1", 5],
["Model B", "Feature Set 2", 10],
["Model C", "Feature Set 3", 15]
]
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
with gr.Column(min_width=320):
shown_phenotypes = gr.CheckboxGroup(
choices=sorted(set([
c.task.value.phenotype
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and c.is_task
])),
label="Select phenotypes to show",
elem_id="phenotype-select",
interactive=True,
)
shown_metrics = gr.CheckboxGroup(
choices=sorted(set([
c.task.value.metric.upper()
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and c.is_task
])),
value=sorted(set([
c.task.value.metric.upper()
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and c.is_task
])),
label="Select metrics to show",
elem_id="metric-select",
interactive=True,
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.is_task
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=True, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
filter_features = gr.CheckboxGroup(
label="Features Set",
choices=[("Baseline (Age, Sex, BMI)", "baseline"), ("Expanded (Age, Sex, BMI, HDL, LDL, Total cholesterol, Triglycerides, Diastolic blood pressure, Smoking status, Snoring, Insomnia, Daytime napping, Sleep duration, Chronotype)", "expanded")],
value=["baseline"],
interactive=True,
elem_id="filter-feature-set",
)
filter_nb_shots = gr.CheckboxGroup(
label="Number of shots",
choices=[("Zero-Shot", 0), ("2-Shot", 2), ("4-Shot", 4), ("6-Shot", 6), ("All", -1)],
value=[0, 2, -1],
interactive=True,
elem_id="filter-nb-shots",
)
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
],
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS],
headers=COLS,
datatype=TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
shown_phenotypes,
shown_metrics,
filter_features,
filter_nb_shots,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
)
for selector in [shown_phenotypes, shown_metrics, shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, filter_nb_shots, filter_features]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
shown_phenotypes,
shown_metrics,
filter_features,
filter_nb_shots,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
"""
with gr.TabItem("📈 ROC/PR Curves", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
shown_phenotypes_curve = gr.CheckboxGroup(
choices=sorted(set([
c.task.value.phenotype
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and c.is_task
])),
label="Select phenotypes",
elem_id="phenotype-select-curve",
interactive=True,
)
with gr.Column():
selected_models = gr.Dropdown(
choices=[format_model_sample(sample) for sample in MODELS],
label="Selected models",
elem_id="selected-models",
interactive=True,
multiselect=True,
)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
"""
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=4):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()