makeavid-sd-jax / makeavid_sd /torch_impl /torch_attention_pseudo3d.py
lopho's picture
forgot about the nested package structure
b2f876f
raw
history blame
11 kB
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from diffusers.models.attention_processor import Attention as CrossAttention
#from torch_cross_attention import CrossAttention
class TransformerPseudo3DModelOutput:
def __init__(self, sample: torch.FloatTensor) -> None:
self.sample = sample
class TransformerPseudo3DModel(nn.Module):
def __init__(self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False
) -> None:
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
# its continuous
# 2. Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups = norm_num_groups,
num_channels = in_channels,
eps = 1e-6,
affine = True
)
self.proj_in = nn.Conv2d(
in_channels,
inner_dim,
kernel_size = 1,
stride = 1,
padding = 0
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout = dropout,
cross_attention_dim = cross_attention_dim,
attention_bias = attention_bias,
)
for _ in range(num_layers)
]
)
# 4. Define output layers
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size = 1, stride = 1, padding = 0)
def forward(self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: torch.long = None
) -> TransformerPseudo3DModelOutput:
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
b, c, *_, h, w = hidden_states.shape
is_video = hidden_states.ndim == 5
f = None
if is_video:
b, c, f, h, w = hidden_states.shape
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w')
#encoder_hidden_states = encoder_hidden_states.repeat_interleave(f, 0)
# 1. Input
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
context = encoder_hidden_states,
timestep = timestep,
frames_length = f,
height = height,
weight = weight
)
# 3. Output
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
hidden_states = self.proj_out(hidden_states)
output = hidden_states + residual
if is_video:
output = rearrange(output, '(b f) c h w -> b c f h w', b = b)
return TransformerPseudo3DModelOutput(sample = output)
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout: float = 0.0,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
) -> None:
super().__init__()
self.attn1 = CrossAttention(
query_dim = dim,
heads = num_attention_heads,
dim_head = attention_head_dim,
dropout = dropout,
bias = attention_bias
) # is a self-attention
self.ff = FeedForward(dim, dropout = dropout)
self.attn2 = CrossAttention(
query_dim = dim,
cross_attention_dim = cross_attention_dim,
heads = num_attention_heads,
dim_head = attention_head_dim,
dropout = dropout,
bias = attention_bias
) # is self-attn if context is none
self.attn_temporal = CrossAttention(
query_dim = dim,
heads = num_attention_heads,
dim_head = attention_head_dim,
dropout = dropout,
bias = attention_bias
) # is a self-attention
# layer norms
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm_temporal = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
def forward(self,
hidden_states: torch.Tensor,
context: Optional[torch.Tensor] = None,
timestep: torch.int64 = None,
frames_length: Optional[int] = None,
height: Optional[int] = None,
weight: Optional[int] = None
) -> torch.Tensor:
if context is not None and frames_length is not None:
context = context.repeat_interleave(frames_length, 0)
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states)
)
hidden_states = self.attn1(norm_hidden_states) + hidden_states
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states)
)
hidden_states = self.attn2(
norm_hidden_states,
encoder_hidden_states = context
) + hidden_states
# append temporal attention
if frames_length is not None:
hidden_states = rearrange(
hidden_states,
'(b f) (h w) c -> (b h w) f c',
f = frames_length,
h = height,
w = weight
)
norm_hidden_states = (
self.norm_temporal(hidden_states)
)
hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
hidden_states = rearrange(
hidden_states,
'(b h w) f c -> (b f) (h w) c',
f = frames_length,
h = height,
w = weight
)
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
"""
def __init__(self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0
) -> None:
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
geglu = GEGLU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(geglu)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
# feedforward
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int) -> None:
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, gate = self.proj(hidden_states).chunk(2, dim = -1)
return hidden_states * F.gelu(gate)