Spaces:
Runtime error
Runtime error
Upload 10 files
Browse files- FetchRecipe.py +16 -0
- Procfile.txt +1 -0
- README.md +32 -6
- RecipeData.py +69 -0
- efficientnet_b0.pt +3 -0
- gitattributes.txt +27 -0
- helper_functions.py +288 -0
- indian_efficientnet_b0.pt +3 -0
- requirements (1).txt +6 -0
- utils.py +122 -0
FetchRecipe.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
|
4 |
+
url = "https://rapidapi.com/spoonacular/api/recipe-food-nutrition"
|
5 |
+
|
6 |
+
querystring = {"q":"chicken soup"}
|
7 |
+
|
8 |
+
headers = {
|
9 |
+
'x-rapidapi-host': "rapidapi.com/spoonacular/api/",
|
10 |
+
'x-rapidapi-key': "1f9b61c859214d3ab6a00a6d82ec5a85"
|
11 |
+
}
|
12 |
+
|
13 |
+
response = requests.request("GET", url, headers=headers, params=querystring)
|
14 |
+
json_data = json.loads(response.text)
|
15 |
+
|
16 |
+
print(json_data)
|
Procfile.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
README.md
CHANGED
@@ -1,12 +1,38 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: SeeFood
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Configuration
|
13 |
+
|
14 |
+
`title`: _string_
|
15 |
+
Display title for the Space
|
16 |
+
|
17 |
+
`emoji`: _string_
|
18 |
+
Space emoji (emoji-only character allowed)
|
19 |
+
|
20 |
+
`colorFrom`: _string_
|
21 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
22 |
+
|
23 |
+
`colorTo`: _string_
|
24 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
25 |
+
|
26 |
+
`sdk`: _string_
|
27 |
+
Can be either `gradio` or `streamlit`
|
28 |
+
|
29 |
+
`sdk_version` : _string_
|
30 |
+
Only applicable for `streamlit` SDK.
|
31 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
+
|
33 |
+
`app_file`: _string_
|
34 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
35 |
+
Path is relative to the root of the repository.
|
36 |
+
|
37 |
+
`pinned`: _boolean_
|
38 |
+
Whether the Space stays on top of your list.
|
RecipeData.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
|
5 |
+
API_KEY = '1f9b61c859214d3ab6a00a6d82ec5a85'
|
6 |
+
|
7 |
+
def fetchRecipeData(foodName, apiKey = API_KEY):
|
8 |
+
recipe = {}
|
9 |
+
|
10 |
+
# Fetching recipe Details from food name
|
11 |
+
url = f"https://api.spoonacular.com/recipes/search?query={foodName}&apiKey={apiKey}"
|
12 |
+
response = requests.get(url)
|
13 |
+
json_data = response.json()
|
14 |
+
|
15 |
+
# saving responce code
|
16 |
+
response_status_code = response.status_code
|
17 |
+
|
18 |
+
# selecting random recipe from fetched recipes
|
19 |
+
recipe_list = json_data['results']
|
20 |
+
foodRecipe = random.choice(recipe_list)
|
21 |
+
|
22 |
+
recipe_ID = foodRecipe['id']
|
23 |
+
|
24 |
+
# getting recipe details from api using recipe id
|
25 |
+
url = f"https://api.spoonacular.com/recipes/{recipe_ID}/information?apiKey={apiKey}&includeNutrition=true"
|
26 |
+
recipe_response = requests.get(url)
|
27 |
+
all_recipe_json_data = recipe_response.json()
|
28 |
+
|
29 |
+
# recipe instructions
|
30 |
+
recipe_instructions = preprocessing_instructions(all_recipe_json_data['instructions'])
|
31 |
+
|
32 |
+
# recipe summary
|
33 |
+
recipe_summary = all_recipe_json_data['summary']
|
34 |
+
|
35 |
+
# recipe ingredients
|
36 |
+
recipe_Ingredients = all_recipe_json_data['extendedIngredients']
|
37 |
+
for i, dict in enumerate(recipe_Ingredients):
|
38 |
+
recipe_Ingredients[i] = dict['originalName']
|
39 |
+
Ingredients = ', '.join(recipe_Ingredients)
|
40 |
+
|
41 |
+
# caloric Breakdow of recipe
|
42 |
+
recipe_caloric_breakdown = all_recipe_json_data['nutrition']['caloricBreakdown']
|
43 |
+
|
44 |
+
# storing all values in recipe dict
|
45 |
+
recipe['id'] = recipe_ID
|
46 |
+
recipe['title'] = foodRecipe['title']
|
47 |
+
recipe['readyTime'] = foodRecipe['readyInMinutes']
|
48 |
+
recipe['soureUrl'] = foodRecipe['sourceUrl']
|
49 |
+
|
50 |
+
recipe['instructions'] = recipe_instructions
|
51 |
+
|
52 |
+
recipe['ingridents'] = recipe_Ingredients
|
53 |
+
|
54 |
+
recipe_summary = recipe_summary.replace('<b>', '')
|
55 |
+
recipe_summary = recipe_summary.replace('</b>', '')
|
56 |
+
recipe['summary'] = recipe_summary
|
57 |
+
|
58 |
+
recipe['percentProtein'] = recipe_caloric_breakdown['percentProtein']
|
59 |
+
recipe['percentFat'] = recipe_caloric_breakdown['percentFat']
|
60 |
+
recipe['percentCarbs'] = recipe_caloric_breakdown['percentCarbs']
|
61 |
+
|
62 |
+
return response_status_code, recipe
|
63 |
+
|
64 |
+
|
65 |
+
def preprocessing_instructions(text):
|
66 |
+
word_to_remove = ['<ol>', '</ol>', '<li>', '</li>']
|
67 |
+
for word in word_to_remove:
|
68 |
+
text = text.replace(word, '')
|
69 |
+
return text
|
efficientnet_b0.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb5a1224fdaf0fdda08749bc702f37f4d2ac1d9e95949aa78d5110c3e6ce93c
|
3 |
+
size 16840433
|
gitattributes.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
helper_functions.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### We create a bunch of helpful functions throughout the course.
|
2 |
+
### Storing them here so they're easily accessible.
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
# Create a function to import an image and resize it to be able to be used with our model
|
7 |
+
def load_and_prep_image(filename, img_shape=224, scale=True):
|
8 |
+
"""
|
9 |
+
Reads in an image from filename, turns it into a tensor and reshapes into
|
10 |
+
(224, 224, 3).
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
filename (str): string filename of target image
|
15 |
+
img_shape (int): size to resize target image to, default 224
|
16 |
+
scale (bool): whether to scale pixel values to range(0, 1), default True
|
17 |
+
"""
|
18 |
+
# Read in the image
|
19 |
+
img = tf.io.read_file(filename)
|
20 |
+
# Decode it into a tensor
|
21 |
+
img = tf.image.decode_jpeg(img)
|
22 |
+
# Resize the image
|
23 |
+
img = tf.image.resize(img, [img_shape, img_shape])
|
24 |
+
if scale:
|
25 |
+
# Rescale the image (get all values between 0 and 1)
|
26 |
+
return img/255.
|
27 |
+
else:
|
28 |
+
return img
|
29 |
+
|
30 |
+
# Note: The following confusion matrix code is a remix of Scikit-Learn's
|
31 |
+
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
|
32 |
+
import itertools
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import numpy as np
|
35 |
+
from sklearn.metrics import confusion_matrix
|
36 |
+
|
37 |
+
# Our function needs a different name to sklearn's plot_confusion_matrix
|
38 |
+
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
|
39 |
+
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
|
40 |
+
|
41 |
+
If classes is passed, confusion matrix will be labelled, if not, integer class values
|
42 |
+
will be used.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
y_true: Array of truth labels (must be same shape as y_pred).
|
46 |
+
y_pred: Array of predicted labels (must be same shape as y_true).
|
47 |
+
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
|
48 |
+
figsize: Size of output figure (default=(10, 10)).
|
49 |
+
text_size: Size of output figure text (default=15).
|
50 |
+
norm: normalize values or not (default=False).
|
51 |
+
savefig: save confusion matrix to file (default=False).
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
A labelled confusion matrix plot comparing y_true and y_pred.
|
55 |
+
|
56 |
+
Example usage:
|
57 |
+
make_confusion_matrix(y_true=test_labels, # ground truth test labels
|
58 |
+
y_pred=y_preds, # predicted labels
|
59 |
+
classes=class_names, # array of class label names
|
60 |
+
figsize=(15, 15),
|
61 |
+
text_size=10)
|
62 |
+
"""
|
63 |
+
# Create the confustion matrix
|
64 |
+
cm = confusion_matrix(y_true, y_pred)
|
65 |
+
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
|
66 |
+
n_classes = cm.shape[0] # find the number of classes we're dealing with
|
67 |
+
|
68 |
+
# Plot the figure and make it pretty
|
69 |
+
fig, ax = plt.subplots(figsize=figsize)
|
70 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
|
71 |
+
fig.colorbar(cax)
|
72 |
+
|
73 |
+
# Are there a list of classes?
|
74 |
+
if classes:
|
75 |
+
labels = classes
|
76 |
+
else:
|
77 |
+
labels = np.arange(cm.shape[0])
|
78 |
+
|
79 |
+
# Label the axes
|
80 |
+
ax.set(title="Confusion Matrix",
|
81 |
+
xlabel="Predicted label",
|
82 |
+
ylabel="True label",
|
83 |
+
xticks=np.arange(n_classes), # create enough axis slots for each class
|
84 |
+
yticks=np.arange(n_classes),
|
85 |
+
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
|
86 |
+
yticklabels=labels)
|
87 |
+
|
88 |
+
# Make x-axis labels appear on bottom
|
89 |
+
ax.xaxis.set_label_position("bottom")
|
90 |
+
ax.xaxis.tick_bottom()
|
91 |
+
|
92 |
+
# Set the threshold for different colors
|
93 |
+
threshold = (cm.max() + cm.min()) / 2.
|
94 |
+
|
95 |
+
# Plot the text on each cell
|
96 |
+
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
97 |
+
if norm:
|
98 |
+
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
|
99 |
+
horizontalalignment="center",
|
100 |
+
color="white" if cm[i, j] > threshold else "black",
|
101 |
+
size=text_size)
|
102 |
+
else:
|
103 |
+
plt.text(j, i, f"{cm[i, j]}",
|
104 |
+
horizontalalignment="center",
|
105 |
+
color="white" if cm[i, j] > threshold else "black",
|
106 |
+
size=text_size)
|
107 |
+
|
108 |
+
# Save the figure to the current working directory
|
109 |
+
if savefig:
|
110 |
+
fig.savefig("confusion_matrix.png")
|
111 |
+
|
112 |
+
# Make a function to predict on images and plot them (works with multi-class)
|
113 |
+
def pred_and_plot(model, filename, class_names):
|
114 |
+
"""
|
115 |
+
Imports an image located at filename, makes a prediction on it with
|
116 |
+
a trained model and plots the image with the predicted class as the title.
|
117 |
+
"""
|
118 |
+
# Import the target image and preprocess it
|
119 |
+
img = load_and_prep_image(filename)
|
120 |
+
|
121 |
+
# Make a prediction
|
122 |
+
pred = model.predict(tf.expand_dims(img, axis=0))
|
123 |
+
|
124 |
+
# Get the predicted class
|
125 |
+
if len(pred[0]) > 1: # check for multi-class
|
126 |
+
pred_class = class_names[pred.argmax()] # if more than one output, take the max
|
127 |
+
else:
|
128 |
+
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
|
129 |
+
|
130 |
+
# Plot the image and predicted class
|
131 |
+
plt.imshow(img)
|
132 |
+
plt.title(f"Prediction: {pred_class}")
|
133 |
+
plt.axis(False);
|
134 |
+
|
135 |
+
import datetime
|
136 |
+
|
137 |
+
def create_tensorboard_callback(dir_name, experiment_name):
|
138 |
+
"""
|
139 |
+
Creates a TensorBoard callback instand to store log files.
|
140 |
+
|
141 |
+
Stores log files with the filepath:
|
142 |
+
"dir_name/experiment_name/current_datetime/"
|
143 |
+
|
144 |
+
Args:
|
145 |
+
dir_name: target directory to store TensorBoard log files
|
146 |
+
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
|
147 |
+
"""
|
148 |
+
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
149 |
+
tensorboard_callback = tf.keras.callbacks.TensorBoard(
|
150 |
+
log_dir=log_dir
|
151 |
+
)
|
152 |
+
print(f"Saving TensorBoard log files to: {log_dir}")
|
153 |
+
return tensorboard_callback
|
154 |
+
|
155 |
+
# Plot the validation and training data separately
|
156 |
+
import matplotlib.pyplot as plt
|
157 |
+
|
158 |
+
def plot_loss_curves(history):
|
159 |
+
"""
|
160 |
+
Returns separate loss curves for training and validation metrics.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
|
164 |
+
"""
|
165 |
+
loss = history.history['loss']
|
166 |
+
val_loss = history.history['val_loss']
|
167 |
+
|
168 |
+
accuracy = history.history['accuracy']
|
169 |
+
val_accuracy = history.history['val_accuracy']
|
170 |
+
|
171 |
+
epochs = range(len(history.history['loss']))
|
172 |
+
|
173 |
+
# Plot loss
|
174 |
+
plt.plot(epochs, loss, label='training_loss')
|
175 |
+
plt.plot(epochs, val_loss, label='val_loss')
|
176 |
+
plt.title('Loss')
|
177 |
+
plt.xlabel('Epochs')
|
178 |
+
plt.legend()
|
179 |
+
|
180 |
+
# Plot accuracy
|
181 |
+
plt.figure()
|
182 |
+
plt.plot(epochs, accuracy, label='training_accuracy')
|
183 |
+
plt.plot(epochs, val_accuracy, label='val_accuracy')
|
184 |
+
plt.title('Accuracy')
|
185 |
+
plt.xlabel('Epochs')
|
186 |
+
plt.legend();
|
187 |
+
|
188 |
+
def compare_historys(original_history, new_history, initial_epochs=5):
|
189 |
+
"""
|
190 |
+
Compares two TensorFlow model History objects.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
original_history: History object from original model (before new_history)
|
194 |
+
new_history: History object from continued model training (after original_history)
|
195 |
+
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
|
196 |
+
"""
|
197 |
+
|
198 |
+
# Get original history measurements
|
199 |
+
acc = original_history.history["accuracy"]
|
200 |
+
loss = original_history.history["loss"]
|
201 |
+
|
202 |
+
val_acc = original_history.history["val_accuracy"]
|
203 |
+
val_loss = original_history.history["val_loss"]
|
204 |
+
|
205 |
+
# Combine original history with new history
|
206 |
+
total_acc = acc + new_history.history["accuracy"]
|
207 |
+
total_loss = loss + new_history.history["loss"]
|
208 |
+
|
209 |
+
total_val_acc = val_acc + new_history.history["val_accuracy"]
|
210 |
+
total_val_loss = val_loss + new_history.history["val_loss"]
|
211 |
+
|
212 |
+
# Make plots
|
213 |
+
plt.figure(figsize=(8, 8))
|
214 |
+
plt.subplot(2, 1, 1)
|
215 |
+
plt.plot(total_acc, label='Training Accuracy')
|
216 |
+
plt.plot(total_val_acc, label='Validation Accuracy')
|
217 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
218 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
219 |
+
plt.legend(loc='lower right')
|
220 |
+
plt.title('Training and Validation Accuracy')
|
221 |
+
|
222 |
+
plt.subplot(2, 1, 2)
|
223 |
+
plt.plot(total_loss, label='Training Loss')
|
224 |
+
plt.plot(total_val_loss, label='Validation Loss')
|
225 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
226 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
227 |
+
plt.legend(loc='upper right')
|
228 |
+
plt.title('Training and Validation Loss')
|
229 |
+
plt.xlabel('epoch')
|
230 |
+
plt.show()
|
231 |
+
|
232 |
+
# Create function to unzip a zipfile into current working directory
|
233 |
+
# (since we're going to be downloading and unzipping a few files)
|
234 |
+
import zipfile
|
235 |
+
|
236 |
+
def unzip_data(filename):
|
237 |
+
"""
|
238 |
+
Unzips filename into the current working directory.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
filename (str): a filepath to a target zip folder to be unzipped.
|
242 |
+
"""
|
243 |
+
zip_ref = zipfile.ZipFile(filename, "r")
|
244 |
+
zip_ref.extractall()
|
245 |
+
zip_ref.close()
|
246 |
+
|
247 |
+
# Walk through an image classification directory and find out how many files (images)
|
248 |
+
# are in each subdirectory.
|
249 |
+
import os
|
250 |
+
|
251 |
+
def walk_through_dir(dir_path):
|
252 |
+
"""
|
253 |
+
Walks through dir_path returning its contents.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
dir_path (str): target directory
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
A print out of:
|
260 |
+
number of subdiretories in dir_path
|
261 |
+
number of images (files) in each subdirectory
|
262 |
+
name of each subdirectory
|
263 |
+
"""
|
264 |
+
for dirpath, dirnames, filenames in os.walk(dir_path):
|
265 |
+
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
|
266 |
+
|
267 |
+
# Function to evaluate: accuracy, precision, recall, f1-score
|
268 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
269 |
+
|
270 |
+
def calculate_results(y_true, y_pred):
|
271 |
+
"""
|
272 |
+
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
y_true: true labels in the form of a 1D array
|
276 |
+
y_pred: predicted labels in the form of a 1D array
|
277 |
+
|
278 |
+
Returns a dictionary of accuracy, precision, recall, f1-score.
|
279 |
+
"""
|
280 |
+
# Calculate model accuracy
|
281 |
+
model_accuracy = accuracy_score(y_true, y_pred) * 100
|
282 |
+
# Calculate model precision, recall and f1 score using "weighted average
|
283 |
+
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
|
284 |
+
model_results = {"accuracy": model_accuracy,
|
285 |
+
"precision": model_precision,
|
286 |
+
"recall": model_recall,
|
287 |
+
"f1": model_f1}
|
288 |
+
return model_results
|
indian_efficientnet_b0.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bf08c828e0305a1965a07295a5edf5580599d41afab0ce160b1a5ea8bcbeef4
|
3 |
+
size 16425393
|
requirements (1).txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.0.0
|
2 |
+
numpy>=1.9.2
|
3 |
+
pandas>=0.19
|
4 |
+
tensorflow==2.6.0
|
5 |
+
matplotlib>=1.4.3
|
6 |
+
scikit-learn>=0.18
|
utils.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import timm
|
6 |
+
import torch.nn as nn
|
7 |
+
import torchvision
|
8 |
+
from torchvision import transforms, datasets, models
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import PIL
|
11 |
+
import PIL.Image as Image
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
classes_outside_india = ['apple pie', 'baby back ribs', 'baklava', 'beef carpaccio', 'beef tartare',
|
17 |
+
'beet salad', 'beignets', 'bibimbap', 'bread pudding', 'breakfast burrito',
|
18 |
+
'bruschetta', 'caesar_salad', 'cannoli', 'caprese salad', 'carrot cake',
|
19 |
+
'ceviche', 'cheese plate', 'cheesecake', 'chicken curry',
|
20 |
+
'chicken quesadilla', 'chicken wings', 'chocolate cake', 'chocolate mousse',
|
21 |
+
'churros', 'clam chowder', 'club sandwich', 'crab cakes', 'creme brulee',
|
22 |
+
'croque madame', 'cup cakes', 'deviled eggs', 'donuts', 'dumplings', 'edamame',
|
23 |
+
'eggs benedict', 'escargots', 'falafel', 'filet mignon', 'fish and chips',
|
24 |
+
'foie gras', 'french fries', 'french onion soup', 'french toast',
|
25 |
+
'fried calamari', 'fried rice', 'frozen yogurt', 'garlic bread', 'gnocchi',
|
26 |
+
'greek salad', 'grilled cheese sandwich', 'grilled salmon', 'guacamole',
|
27 |
+
'gyoza', 'hamburger', 'hot and sour soup', 'hot dog', 'huevos rancheros',
|
28 |
+
'hummus', 'ice cream', 'lasagna', 'lobster bisque', 'lobster roll sandwich',
|
29 |
+
'macaroni and cheese', 'macarons', 'miso soup', 'mussels', 'nachos',
|
30 |
+
'omelette', 'onion rings', 'oysters', 'pad thai', 'paella', 'pancakes',
|
31 |
+
'panna cotta', 'peking duck', 'pho', 'pizza', 'pork chop', 'poutine',
|
32 |
+
'prime rib', 'pulled pork sandwich', 'ramen', 'ravioli', 'red velvet cake',
|
33 |
+
'risotto', 'samosa', 'sashimi', 'scallops', 'seaweed salad',
|
34 |
+
'shrimp and grits', 'spaghetti bolognese', 'spaghetti carbonara',
|
35 |
+
'spring rolls', 'steak', 'strawberry_shortcake', 'sushi', 'tacos', 'takoyaki',
|
36 |
+
'tiramisu', 'tuna tartare', 'waffles']
|
37 |
+
|
38 |
+
classes_india = ['burger','butter_naan', 'chai', 'chapati', 'chole_bhature', 'dal_makhani', 'dhokla', 'fried_rice', 'idli',
|
39 |
+
'jalebi', 'kaathi_rolls', 'kadai_paneer', 'kulfi', 'masala_dosa', 'momos', 'paani_puri', 'pakode', 'pav_bhaji',
|
40 |
+
'pizza', 'samosa']
|
41 |
+
|
42 |
+
|
43 |
+
def make_pred_outside_india(input_img, model, device, user_location):
|
44 |
+
input_img = input_img.unsqueeze(0)
|
45 |
+
model.eval()
|
46 |
+
pred = model(input_img)
|
47 |
+
# if torch.cuda.is_available():
|
48 |
+
# pred = F.softmax(pred).detach().cpu().numpy()
|
49 |
+
# y_prob = pred.argmax(axis=1)[0] #return index with highest class probability
|
50 |
+
# else:
|
51 |
+
pred = F.softmax(pred).detach().numpy()
|
52 |
+
y_prob = pred.argmax(axis=1)[0]
|
53 |
+
|
54 |
+
if(user_location=='Outside_India'):
|
55 |
+
class_label = classes_outside_india[y_prob]
|
56 |
+
elif(user_location=='India'):
|
57 |
+
class_label = classes_india[y_prob]
|
58 |
+
return class_label
|
59 |
+
|
60 |
+
|
61 |
+
def getmodel_outside_india(model_path):
|
62 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
+
effnet_b0 = timm.create_model(pretrained=True, model_name='tf_efficientnet_b0')
|
64 |
+
|
65 |
+
for param in effnet_b0.parameters():
|
66 |
+
param.requires_grad = True
|
67 |
+
|
68 |
+
effnet_b0.classifier = nn.Linear(1280, len(classes_outside_india))
|
69 |
+
effnet_b0 = effnet_b0
|
70 |
+
|
71 |
+
#Model Loading
|
72 |
+
effnet_b0.load_state_dict(torch.load(model_path,map_location='cpu'))
|
73 |
+
return effnet_b0
|
74 |
+
|
75 |
+
|
76 |
+
def getmodel_india(model_path):
|
77 |
+
#defining model
|
78 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
79 |
+
effnet_b0 = timm.create_model(pretrained=True, model_name='tf_efficientnet_b0')
|
80 |
+
|
81 |
+
for param in effnet_b0.parameters():
|
82 |
+
param.requires_grad = True
|
83 |
+
|
84 |
+
effnet_b0.classifier = nn.Linear(1280, len(classes_india))
|
85 |
+
effnet_b0 = effnet_b0
|
86 |
+
|
87 |
+
#Model Loading
|
88 |
+
effnet_b0.load_state_dict(torch.load(model_path, map_location='cpu'))
|
89 |
+
return effnet_b0
|
90 |
+
|
91 |
+
|
92 |
+
def load_prepare_img(image):
|
93 |
+
normalize = transforms.Normalize(
|
94 |
+
[0.485, 0.456, 0.406],
|
95 |
+
[0.229, 0.224, 0.225]
|
96 |
+
)
|
97 |
+
|
98 |
+
test_transform = transforms.Compose([
|
99 |
+
transforms.Resize((225, 225)),
|
100 |
+
transforms.CenterCrop(224),
|
101 |
+
transforms.ToTensor(),
|
102 |
+
normalize,
|
103 |
+
])
|
104 |
+
input_img = test_transform(image)
|
105 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
106 |
+
return input_img,device
|
107 |
+
|
108 |
+
def fetch_recipe(food_name):
|
109 |
+
url = "https://recipesapi2.p.rapidapi.com/recipes/"+food_name
|
110 |
+
querystring = {"maxRecipes":"1"}
|
111 |
+
|
112 |
+
headers = {
|
113 |
+
'x-rapidapi-host': "recipesapi2.p.rapidapi.com",
|
114 |
+
'x-rapidapi-key': "f6f6823b91msh9e92fed91d5356ap136f5djsn494d8f582fb3"
|
115 |
+
}
|
116 |
+
|
117 |
+
response = requests.request("GET", url, headers=headers, params=querystring)
|
118 |
+
json_data = json.loads(response.text)
|
119 |
+
|
120 |
+
recipe_data = json_data['data'][0]
|
121 |
+
|
122 |
+
return recipe_data
|