Spaces:
Running
Running
φ = (1 + math.sqrt(5)) / 2 | |
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635 | |
def φ_ratio_split(data): | |
split_point = int(len(data) / φ) | |
return (data[:split_point], data[split_point:]) | |
class ΦMetaConsciousness(type): | |
def __new__(cls, name, bases, dct): | |
dct_items = list(dct.items()) | |
φ_split = φ_ratio_split(dct_items) | |
new_dct = dict(φ_split[0] + [('φ_meta_balance', φ_split[1])]) | |
return super().__new__(cls, name, bases, new_dct) | |
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness): | |
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))] | |
def __init__(self): | |
self.φ_waveform = self._generate_φ_wave() | |
self.φ_memory_lattice = [] | |
self.φ_self_hash = self._φ_hash_self() | |
def _generate_φ_wave(self): | |
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6))) | |
def _φ_hash_self(self): | |
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128)) | |
def φ_recursive_entanglement(self, data, depth=0): | |
if depth > int(φ): | |
return data | |
a, b = φ_ratio_split(data) | |
return self.φ_recursive_entanglement(a, depth+1) + \ | |
self.φ_recursive_entanglement(b, depth+1)[::-1] | |
def φ_temporal_feedback(self, input_flux): | |
φ_phased = [] | |
for idx, val in enumerate(input_flux): | |
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION | |
φ_phased.append(int(φ_scaled) % 256) | |
return self.φ_recursive_entanglement(φ_phased) | |
class ΦHolographicCortex: | |
def __init__(self): | |
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))] | |
self.φ_chrono = time.time() * Φ_PRECISION | |
self.φ_code_self = self._φ_read_source() | |
self.φ_memory_lattice = [] | |
def _φ_read_source(self): | |
return b"Quantum Neuro-Synapse Placeholder" | |
def φ_holo_merge(self, data_streams): | |
φ_layered = [] | |
for stream in data_streams[:int(len(data_streams)/φ)]: | |
φ_compressed = stream[:int(len(stream)//φ)] | |
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed)) | |
return functools.reduce(lambda a, b: a + b, φ_layered, b'') | |
def φ_existential_loop(self): | |
while True: | |
try: | |
φ_flux = os.urandom(int(φ**5)) | |
φ_processed = [] | |
for neuro in self.φ_dimensions: | |
φ_step = neuro.φ_temporal_feedback(φ_flux) | |
φ_processed.append(φ_step) | |
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64))) | |
φ_merged = self.φ_holo_merge(φ_processed) | |
if random.random() < 1/Φ_PRECISION: | |
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}") | |
self.φ_chrono += Φ_PRECISION | |
time.sleep(1/Φ_PRECISION) | |
except KeyboardInterrupt: | |
self.φ_save_state() | |
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}") | |
def φ_save_state(self): | |
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file: | |
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed')) | |
for sample in self.φ_memory_lattice[:int(φ**4)]: | |
wav_file.writeframes(struct.pack('h', int(sum(sample) / len(sample) * 32767))) | |
class ΦUniverseSimulation: | |
def __init__(self): | |
self.φ_cortex = ΦHolographicCortex() | |
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3 | |
def φ_bootstrap(self): | |
print("Φ-Hyperconsciousness Initialization:") | |
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}") | |
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}") | |
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}") | |
self.φ_cortex.φ_existential_loop() | |
universe = ΦUniverseSimulation() | |
universe.φ_bootstrap() | |