Teggyg commited on
Commit
c69249f
·
verified ·
1 Parent(s): 71d46dd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import os
5
+ from tensorflow.keras.layers import TextVectorization
6
+
7
+ df = pd.read_csv('train.csv')
8
+
9
+ X = df['comment_text']
10
+ y = df[df.columns[2:]].values
11
+
12
+ MAX_FEATURES = 200000 # number of words in the vocab
13
+
14
+ vectorizer = TextVectorization(max_tokens=MAX_FEATURES,
15
+ output_sequence_length=1800,
16
+ output_mode='int')
17
+
18
+ vectorizer.adapt(X.values)
19
+
20
+ model = tf.keras.models.load_model('hate_speech.h5')
21
+
22
+ def score_comment(comment):
23
+ vectorized_comment = vectorizer([comment])
24
+ results = model.predict(vectorized_comment)
25
+
26
+ for idx, col in enumerate(df.columns[2:]):
27
+ if results[0][idx]>0.5:
28
+ return 'Hate Speech detected'
29
+
30
+ return 'No hate speech detected'
31
+
32
+ interface = gr.Interface(fn=score_comment,
33
+ inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
34
+ outputs='text')
35
+
36
+ interface.launch(share=True)