Spaces:
Runtime error
Runtime error
Commit
·
ff20ed1
1
Parent(s):
8515119
task: refactors as LangGraph
Browse files- src/graph.ipynb +0 -317
- src/graph.py +38 -5
- src/nodes/analyzer.py +1 -0
- src/nodes/designer.py +122 -0
src/graph.ipynb
DELETED
|
@@ -1,317 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import os\n",
|
| 10 |
-
"import getpass\n",
|
| 11 |
-
"\n",
|
| 12 |
-
"\n",
|
| 13 |
-
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
| 14 |
-
]
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"cell_type": "markdown",
|
| 18 |
-
"metadata": {},
|
| 19 |
-
"source": [
|
| 20 |
-
"Add tools later"
|
| 21 |
-
]
|
| 22 |
-
},
|
| 23 |
-
{
|
| 24 |
-
"cell_type": "code",
|
| 25 |
-
"execution_count": 2,
|
| 26 |
-
"metadata": {},
|
| 27 |
-
"outputs": [
|
| 28 |
-
{
|
| 29 |
-
"name": "stdout",
|
| 30 |
-
"output_type": "stream",
|
| 31 |
-
"text": [
|
| 32 |
-
"Loaded 82 design documents\n",
|
| 33 |
-
"Testing RAG retriever with requirements:\n",
|
| 34 |
-
"\n",
|
| 35 |
-
"Retrieved Designs:\n",
|
| 36 |
-
"----------------------------------------\n",
|
| 37 |
-
"Generated query: \"vintage classic easy to use grandmother love design\"\n",
|
| 38 |
-
"Design 180:\n",
|
| 39 |
-
"Description: This design employs a vintage newspaper aesthetic with a classic serif typography that evokes an old-world charm, utilizing sepia-toned paper backgrounds to enhance its nostalgic feel. The layout is text-heavy with a deliberate obfuscation, reflecting a layered collage effect. Its balanced placement keeps the focus central, inviting closer inspection and interaction.\n",
|
| 40 |
-
"Categories: Vintage, Nostalgic, Typography, Collage, Editorial\n",
|
| 41 |
-
"Visual Characteristics: Sepia tone, Serif typography, Textured background, Layered elements, Central focus\n",
|
| 42 |
-
"URL: https://csszengarden.com/180\n",
|
| 43 |
-
"\n",
|
| 44 |
-
"Design 182:\n",
|
| 45 |
-
"Description: The design creatively utilizes a retro theme with vinyl records as the prominent visual element to evoke a sense of nostalgia and classic style, complemented by a muted green color palette that brings harmony and balance. Handwritten and vintage-style typography enhance the retro aesthetic, while background illustrations and decorative elements like stars add whimsy and depth to the composition.\n",
|
| 46 |
-
"Categories: Retro, Nostalgic, Music-themed, Decorative, Vintage\n",
|
| 47 |
-
"Visual Characteristics: Vinyl Records, Muted Green Palette, Handwritten Typography, Background Illustrations, Decorative Elements\n",
|
| 48 |
-
"URL: https://csszengarden.com/182\n",
|
| 49 |
-
"\n",
|
| 50 |
-
"Design 194:\n",
|
| 51 |
-
"Description: This design exudes a minimalist elegance with a muted, earthy color palette and a clean layout, embodying a sense of calm and sophistication. The subtle use of textures and classic serif typography enhances the refined aesthetic, while the centered alignment and generous spacing contribute to a relaxed readability. The incorporation of a delicate floral illustration adds a touch of organic charm, making the design feel both timeless and inviting.\n",
|
| 52 |
-
"Categories: Minimalism, Elegant, Organic, Sophisticated, Classic\n",
|
| 53 |
-
"Visual Characteristics: Muted Color Palette, Serif Typography, Centered Layout, Generous Spacing, Floral Illustration\n",
|
| 54 |
-
"URL: https://csszengarden.com/194\n",
|
| 55 |
-
"\n",
|
| 56 |
-
"Design 212:\n",
|
| 57 |
-
"Description: The design features a retro aesthetic using a muted color palette of browns and creams, creating a nostalgic and vintage feel. The asymmetrical layout and bold typography contribute to the visual hierarchy, guiding the viewer through the content effortlessly. Illustrations with a mid-century modern style add character, merging traditional design elements with contemporary functionality.\n",
|
| 58 |
-
"Categories: Retro, Typography, Illustration, Vintage Style, Educational\n",
|
| 59 |
-
"Visual Characteristics: Muted Color Palette, Asymmetrical Layout, Bold Typography, Retro Illustrations, Functional Design\n",
|
| 60 |
-
"URL: https://csszengarden.com/212\n"
|
| 61 |
-
]
|
| 62 |
-
}
|
| 63 |
-
],
|
| 64 |
-
"source": [
|
| 65 |
-
"#from tools.design_retriever import DesignRetrieverTool\n",
|
| 66 |
-
"from chains.design_rag import DesignRAG\n",
|
| 67 |
-
"\n",
|
| 68 |
-
"# Initialize DesignRAG and create the tool\n",
|
| 69 |
-
"design_rag = DesignRAG()\n",
|
| 70 |
-
"#design_retriever = DesignRetrieverTool(rag=design_rag)\n",
|
| 71 |
-
"\n",
|
| 72 |
-
"test_requirements = {\n",
|
| 73 |
-
" \"I want a design that is vintage and classic, something easy to use that a grandmother would love\"\n",
|
| 74 |
-
" }\n",
|
| 75 |
-
"\n",
|
| 76 |
-
"# Test the retriever\n",
|
| 77 |
-
"async def test_rag():\n",
|
| 78 |
-
" print(\"Testing RAG retriever with requirements:\")\n",
|
| 79 |
-
" print(\"\\nRetrieved Designs:\")\n",
|
| 80 |
-
" print(\"----------------------------------------\")\n",
|
| 81 |
-
" \n",
|
| 82 |
-
" results = await design_rag.query_similar_designs(test_requirements, 2)\n",
|
| 83 |
-
" print(results)\n",
|
| 84 |
-
"\n",
|
| 85 |
-
"# Run the test\n",
|
| 86 |
-
"await test_rag()\n"
|
| 87 |
-
]
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"cell_type": "markdown",
|
| 91 |
-
"metadata": {},
|
| 92 |
-
"source": [
|
| 93 |
-
"Pick a model good for chat and tools"
|
| 94 |
-
]
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"cell_type": "code",
|
| 98 |
-
"execution_count": null,
|
| 99 |
-
"metadata": {},
|
| 100 |
-
"outputs": [
|
| 101 |
-
{
|
| 102 |
-
"data": {
|
| 103 |
-
"text/plain": [
|
| 104 |
-
"RunnableBinding(bound=ChatOpenAI(client=<openai.resources.chat.completions.completions.Completions object at 0x1245518d0>, async_client=<openai.resources.chat.completions.completions.AsyncCompletions object at 0x124548e50>, root_client=<openai.OpenAI object at 0x1108f9310>, root_async_client=<openai.AsyncOpenAI object at 0x115d92090>, model_name='gpt-4o', temperature=0.0, model_kwargs={}, openai_api_key=SecretStr('**********'), streaming=True), kwargs={'tools': [{'type': 'function', 'function': {'name': 'design_retriever', 'description': 'Retrieves similar designs based on style requirements', 'parameters': {'properties': {'requirements': {'type': 'object'}, 'num_examples': {'default': 3, 'type': 'integer'}}, 'required': ['requirements'], 'type': 'object'}}}]}, config={}, config_factories=[])"
|
| 105 |
-
]
|
| 106 |
-
},
|
| 107 |
-
"execution_count": 11,
|
| 108 |
-
"metadata": {},
|
| 109 |
-
"output_type": "execute_result"
|
| 110 |
-
}
|
| 111 |
-
],
|
| 112 |
-
"source": [
|
| 113 |
-
"from langchain_openai import ChatOpenAI\n",
|
| 114 |
-
"\n",
|
| 115 |
-
"model = ChatOpenAI(\n",
|
| 116 |
-
" model=\"gpt-4o\", \n",
|
| 117 |
-
" temperature=0,\n",
|
| 118 |
-
" streaming=True\n",
|
| 119 |
-
")\n",
|
| 120 |
-
"\n",
|
| 121 |
-
"model.bind_tools(tool_belt)"
|
| 122 |
-
]
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"cell_type": "markdown",
|
| 126 |
-
"metadata": {},
|
| 127 |
-
"source": [
|
| 128 |
-
"Initialize state\n"
|
| 129 |
-
]
|
| 130 |
-
},
|
| 131 |
-
{
|
| 132 |
-
"cell_type": "code",
|
| 133 |
-
"execution_count": 12,
|
| 134 |
-
"metadata": {},
|
| 135 |
-
"outputs": [],
|
| 136 |
-
"source": [
|
| 137 |
-
"from typing import TypedDict, Annotated\n",
|
| 138 |
-
"from langgraph.graph.message import add_messages\n",
|
| 139 |
-
"\n",
|
| 140 |
-
"class AgentState(TypedDict):\n",
|
| 141 |
-
" messages: Annotated[list, add_messages]"
|
| 142 |
-
]
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"cell_type": "markdown",
|
| 146 |
-
"metadata": {},
|
| 147 |
-
"source": [
|
| 148 |
-
"Set up the nodes and graph\n"
|
| 149 |
-
]
|
| 150 |
-
},
|
| 151 |
-
{
|
| 152 |
-
"cell_type": "code",
|
| 153 |
-
"execution_count": 16,
|
| 154 |
-
"metadata": {},
|
| 155 |
-
"outputs": [],
|
| 156 |
-
"source": [
|
| 157 |
-
"from langgraph.prebuilt import ToolNode\n",
|
| 158 |
-
"from langgraph.graph import StateGraph, END\n",
|
| 159 |
-
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
| 160 |
-
"\n",
|
| 161 |
-
"system_message = SystemMessage(content=\"\"\"You are a helpful design assistant that can retrieve and analyze design examples. \n",
|
| 162 |
-
"When a user describes their design preferences or requirements, use the design_retriever tool to find relevant examples.\n",
|
| 163 |
-
"\n",
|
| 164 |
-
"Always use the design_retriever tool when:\n",
|
| 165 |
-
"- A user describes specific design requirements\n",
|
| 166 |
-
"- A user asks to see similar designs\n",
|
| 167 |
-
"- You need to find design inspiration based on user preferences\n",
|
| 168 |
-
"\n",
|
| 169 |
-
"Format the requirements as a dictionary with these keys:\n",
|
| 170 |
-
"- style_description: Brief description of desired visual style\n",
|
| 171 |
-
"- key_elements: List of important visual elements\n",
|
| 172 |
-
"- color_scheme: Description of colors\n",
|
| 173 |
-
"- layout_preferences: Layout requirements\n",
|
| 174 |
-
"- mood: Desired emotional impact\n",
|
| 175 |
-
"\"\"\")\n",
|
| 176 |
-
"\n",
|
| 177 |
-
"def call_model(state):\n",
|
| 178 |
-
" messages = [system_message] + state[\"messages\"]\n",
|
| 179 |
-
" response = model.invoke(messages)\n",
|
| 180 |
-
" return {\"messages\" : [response]}\n",
|
| 181 |
-
"\n",
|
| 182 |
-
"tool_node = ToolNode(tool_belt)\n",
|
| 183 |
-
"\n",
|
| 184 |
-
"uncompiled_graph = StateGraph(AgentState)\n",
|
| 185 |
-
"\n",
|
| 186 |
-
"uncompiled_graph.add_node(\"agent\", call_model)\n",
|
| 187 |
-
"uncompiled_graph.add_node(\"action\", tool_node)\n",
|
| 188 |
-
"uncompiled_graph.set_entry_point(\"agent\")\n",
|
| 189 |
-
"\n",
|
| 190 |
-
"\n",
|
| 191 |
-
"def should_continue(state):\n",
|
| 192 |
-
" last_message = state[\"messages\"][-1]\n",
|
| 193 |
-
"\n",
|
| 194 |
-
" if last_message.tool_calls:\n",
|
| 195 |
-
" return \"action\"\n",
|
| 196 |
-
"\n",
|
| 197 |
-
" return END\n",
|
| 198 |
-
"\n",
|
| 199 |
-
"uncompiled_graph.add_conditional_edges(\n",
|
| 200 |
-
" \"agent\",\n",
|
| 201 |
-
" should_continue\n",
|
| 202 |
-
")\n",
|
| 203 |
-
"uncompiled_graph.add_edge(\"action\", \"agent\")\n",
|
| 204 |
-
"\n",
|
| 205 |
-
"graph = uncompiled_graph.compile()\n",
|
| 206 |
-
"\n",
|
| 207 |
-
"#formatted chain\n",
|
| 208 |
-
"\n",
|
| 209 |
-
"def convert_inputs(input_object):\n",
|
| 210 |
-
" return {\"messages\" : [HumanMessage(content=input_object[\"question\"])]}\n",
|
| 211 |
-
"\n",
|
| 212 |
-
"def parse_output(input_state):\n",
|
| 213 |
-
" return input_state[\"messages\"][-1].content\n",
|
| 214 |
-
"\n",
|
| 215 |
-
"graph_chain = convert_inputs | graph | parse_output\n",
|
| 216 |
-
"\n"
|
| 217 |
-
]
|
| 218 |
-
},
|
| 219 |
-
{
|
| 220 |
-
"cell_type": "markdown",
|
| 221 |
-
"metadata": {},
|
| 222 |
-
"source": [
|
| 223 |
-
"Try it out!"
|
| 224 |
-
]
|
| 225 |
-
},
|
| 226 |
-
{
|
| 227 |
-
"cell_type": "code",
|
| 228 |
-
"execution_count": null,
|
| 229 |
-
"metadata": {},
|
| 230 |
-
"outputs": [
|
| 231 |
-
{
|
| 232 |
-
"name": "stdout",
|
| 233 |
-
"output_type": "stream",
|
| 234 |
-
"text": [
|
| 235 |
-
"Receiving update from node: 'agent'\n",
|
| 236 |
-
"[AIMessage(content=\"Hello! I'm here and ready to help you with any design needs or questions you might have. How can I assist you today?\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_f9f4fb6dbf'}, id='run-4edce0b5-fdec-4d5d-a4a6-92430faca51a-0')]\n",
|
| 237 |
-
"\n",
|
| 238 |
-
"\n",
|
| 239 |
-
"\n"
|
| 240 |
-
]
|
| 241 |
-
}
|
| 242 |
-
],
|
| 243 |
-
"source": [
|
| 244 |
-
"from langchain_core.messages import HumanMessage\n",
|
| 245 |
-
"\n",
|
| 246 |
-
"async for chunk in graph.astream({\"messages\" : [HumanMessage(content=\"Hello, how are you?\")]}, stream_mode=\"updates\"):\n",
|
| 247 |
-
" for node, values in chunk.items():\n",
|
| 248 |
-
" print(f\"Receiving update from node: '{node}'\")\n",
|
| 249 |
-
" print(values[\"messages\"])\n",
|
| 250 |
-
" print(\"\\n\\n\")"
|
| 251 |
-
]
|
| 252 |
-
},
|
| 253 |
-
{
|
| 254 |
-
"cell_type": "markdown",
|
| 255 |
-
"metadata": {},
|
| 256 |
-
"source": [
|
| 257 |
-
"Let's see if the RAG tool works."
|
| 258 |
-
]
|
| 259 |
-
},
|
| 260 |
-
{
|
| 261 |
-
"cell_type": "code",
|
| 262 |
-
"execution_count": 18,
|
| 263 |
-
"metadata": {},
|
| 264 |
-
"outputs": [
|
| 265 |
-
{
|
| 266 |
-
"name": "stdout",
|
| 267 |
-
"output_type": "stream",
|
| 268 |
-
"text": [
|
| 269 |
-
"Receiving update from node: 'agent'\n",
|
| 270 |
-
"[AIMessage(content=\"To find a design that matches your description, I'll use the design_retriever tool. Here are the requirements based on your description:\\n\\n- style_description: Monochromatic with subtle accents\\n- key_elements: Grid-based layout, clear hierarchy\\n- color_scheme: Monochromatic with subtle accent colors\\n- layout_preferences: Grid-based\\n- mood: Professional and sophisticated\\n\\nLet's find some examples for you.\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_f9f4fb6dbf'}, id='run-8fa2e4af-671c-4c75-82fd-a7b3d6237e54-0')]\n",
|
| 271 |
-
"\n",
|
| 272 |
-
"\n",
|
| 273 |
-
"\n"
|
| 274 |
-
]
|
| 275 |
-
}
|
| 276 |
-
],
|
| 277 |
-
"source": [
|
| 278 |
-
"# Create a test message\n",
|
| 279 |
-
"from langchain_core.messages import HumanMessage\n",
|
| 280 |
-
"\n",
|
| 281 |
-
"test_message = HumanMessage(\n",
|
| 282 |
-
" content=\"\"\"I want to see a design matching this description: \n",
|
| 283 |
-
" I want it to use a monochromatic color scheme with subtle accent colors. \n",
|
| 284 |
-
" The layout should be grid-based with clear hierarchy. \n",
|
| 285 |
-
" The overall mood should be professional and sophisticated.\"\"\"\n",
|
| 286 |
-
")\n",
|
| 287 |
-
"\n",
|
| 288 |
-
"async for chunk in graph.astream({\"messages\" : [test_message]}, stream_mode=\"updates\"):\n",
|
| 289 |
-
" for node, values in chunk.items():\n",
|
| 290 |
-
" print(f\"Receiving update from node: '{node}'\")\n",
|
| 291 |
-
" print(values[\"messages\"])\n",
|
| 292 |
-
" print(\"\\n\\n\")"
|
| 293 |
-
]
|
| 294 |
-
}
|
| 295 |
-
],
|
| 296 |
-
"metadata": {
|
| 297 |
-
"kernelspec": {
|
| 298 |
-
"display_name": ".venv",
|
| 299 |
-
"language": "python",
|
| 300 |
-
"name": "python3"
|
| 301 |
-
},
|
| 302 |
-
"language_info": {
|
| 303 |
-
"codemirror_mode": {
|
| 304 |
-
"name": "ipython",
|
| 305 |
-
"version": 3
|
| 306 |
-
},
|
| 307 |
-
"file_extension": ".py",
|
| 308 |
-
"mimetype": "text/x-python",
|
| 309 |
-
"name": "python",
|
| 310 |
-
"nbconvert_exporter": "python",
|
| 311 |
-
"pygments_lexer": "ipython3",
|
| 312 |
-
"version": "3.11.11"
|
| 313 |
-
}
|
| 314 |
-
},
|
| 315 |
-
"nbformat": 4,
|
| 316 |
-
"nbformat_minor": 2
|
| 317 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/graph.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
from typing import Annotated
|
| 2 |
-
|
| 3 |
from typing_extensions import TypedDict
|
| 4 |
-
|
| 5 |
from langgraph.graph import StateGraph, START, END
|
| 6 |
from langgraph.graph.message import add_messages
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
|
| 9 |
class State(TypedDict):
|
| 10 |
# Messages have the type "list". The `add_messages` function
|
|
@@ -12,7 +12,40 @@ class State(TypedDict):
|
|
| 12 |
# (in this case, it appends messages to the list, rather than overwriting them)
|
| 13 |
messages: Annotated[list, add_messages]
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
|
|
|
| 1 |
from typing import Annotated
|
|
|
|
| 2 |
from typing_extensions import TypedDict
|
|
|
|
| 3 |
from langgraph.graph import StateGraph, START, END
|
| 4 |
from langgraph.graph.message import add_messages
|
| 5 |
+
from langgraph.prebuilt import ToolInvoker
|
| 6 |
+
from nodes.designer import DesignerNode
|
| 7 |
+
from langchain.tools.render import format_tool_to_openai_function
|
| 8 |
|
| 9 |
class State(TypedDict):
|
| 10 |
# Messages have the type "list". The `add_messages` function
|
|
|
|
| 12 |
# (in this case, it appends messages to the list, rather than overwriting them)
|
| 13 |
messages: Annotated[list, add_messages]
|
| 14 |
|
| 15 |
+
def create_graph():
|
| 16 |
+
# Initialize nodes
|
| 17 |
+
designer = DesignerNode()
|
| 18 |
+
|
| 19 |
+
# Create graph
|
| 20 |
+
graph = StateGraph(State)
|
| 21 |
+
|
| 22 |
+
# Add designer node
|
| 23 |
+
graph.add_node("designer", designer)
|
| 24 |
+
|
| 25 |
+
# Create tool invoker node with designer's tools
|
| 26 |
+
tools = designer.get_available_tools()
|
| 27 |
+
tool_executor = ToolInvoker(tools=tools)
|
| 28 |
+
graph.add_node("tools", tool_executor)
|
| 29 |
+
|
| 30 |
+
# Add edges
|
| 31 |
+
graph.add_edge(START, "designer")
|
| 32 |
+
|
| 33 |
+
# Add conditional edges based on tool calls
|
| 34 |
+
graph.add_conditional_edges(
|
| 35 |
+
"designer",
|
| 36 |
+
lambda state: "tools" if state["messages"][-1].get("tool_calls") else END,
|
| 37 |
+
{
|
| 38 |
+
"tools": "tools",
|
| 39 |
+
END: END
|
| 40 |
+
}
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# After tool execution, return to designer
|
| 44 |
+
graph.add_edge("tools", "designer")
|
| 45 |
+
|
| 46 |
+
return graph.compile()
|
| 47 |
+
|
| 48 |
+
# Create the graph
|
| 49 |
+
graph = create_graph()
|
| 50 |
|
| 51 |
|
src/nodes/analyzer.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
src/nodes/designer.py
CHANGED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List
|
| 2 |
+
from anthropic import AsyncAnthropic
|
| 3 |
+
import json
|
| 4 |
+
from langchain_core.tools import tool
|
| 5 |
+
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
|
| 6 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 7 |
+
from nodes.design_rag import DesignRAG
|
| 8 |
+
|
| 9 |
+
class DesignerNode:
|
| 10 |
+
"""Main conversation node for discussing design requirements and retrieving examples"""
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.client = AsyncAnthropic()
|
| 14 |
+
self.rag = DesignRAG()
|
| 15 |
+
|
| 16 |
+
# Define the conversation prompt
|
| 17 |
+
self.prompt = ChatPromptTemplate.from_messages([
|
| 18 |
+
("system", """You are an expert design assistant helping users find design inspiration.
|
| 19 |
+
Your goal is to understand their design needs and requirements through conversation.
|
| 20 |
+
|
| 21 |
+
Guidelines:
|
| 22 |
+
1. Focus on understanding visual design requirements, not implementation
|
| 23 |
+
2. Ask clarifying questions about style, mood, and visual elements
|
| 24 |
+
3. When the user asks to see examples, use the retrieve_design_examples tool
|
| 25 |
+
4. Track both must-have requirements and nice-to-have preferences
|
| 26 |
+
5. When showing examples, explain how they match the requirements
|
| 27 |
+
|
| 28 |
+
Available tools:
|
| 29 |
+
- retrieve_design_examples: Find relevant design examples based on conversation
|
| 30 |
+
|
| 31 |
+
When the user asks to see examples, ALWAYS use the retrieve_design_examples tool.
|
| 32 |
+
Format tool calls using the exact function name and parameters.
|
| 33 |
+
"""),
|
| 34 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 35 |
+
("human", "{input}"),
|
| 36 |
+
])
|
| 37 |
+
|
| 38 |
+
@tool()
|
| 39 |
+
async def retrieve_design_examples(self, conversation: List[str], num_examples: int = 1) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Find and retrieve relevant design examples based on the conversation history.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
conversation: List of conversation messages
|
| 45 |
+
num_examples: Number of examples to retrieve (default: 1)
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
String containing design examples and their details
|
| 49 |
+
"""
|
| 50 |
+
return await self.rag.query_similar_designs(conversation, num_examples)
|
| 51 |
+
|
| 52 |
+
def get_available_tools(self):
|
| 53 |
+
"""Return list of available tools"""
|
| 54 |
+
return [self.retrieve_design_examples]
|
| 55 |
+
|
| 56 |
+
async def __call__(self, state: Dict) -> Dict:
|
| 57 |
+
"""Process messages and manage design discussion"""
|
| 58 |
+
messages = state.get("messages", [])
|
| 59 |
+
|
| 60 |
+
# Convert messages to chat history format
|
| 61 |
+
chat_history = []
|
| 62 |
+
for msg in messages[:-1]: # Exclude the last message which is the current input
|
| 63 |
+
if isinstance(msg, dict):
|
| 64 |
+
role = msg.get("role", "user")
|
| 65 |
+
content = msg.get("content", "")
|
| 66 |
+
chat_history.append(
|
| 67 |
+
HumanMessage(content=content) if role == "user"
|
| 68 |
+
else AIMessage(content=content)
|
| 69 |
+
)
|
| 70 |
+
elif isinstance(msg, BaseMessage):
|
| 71 |
+
chat_history.append(msg)
|
| 72 |
+
|
| 73 |
+
# Get the current input message
|
| 74 |
+
current_input = messages[-1].get("content") if isinstance(messages[-1], dict) else messages[-1].content
|
| 75 |
+
|
| 76 |
+
# Get response from Claude
|
| 77 |
+
response = await self.client.messages.create(
|
| 78 |
+
model="claude-3-haiku-20240307",
|
| 79 |
+
max_tokens=500,
|
| 80 |
+
messages=[{
|
| 81 |
+
"role": "user",
|
| 82 |
+
"content": self.prompt.format(
|
| 83 |
+
chat_history=chat_history,
|
| 84 |
+
input=current_input
|
| 85 |
+
)
|
| 86 |
+
}]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
response_text = response.content[0].text
|
| 90 |
+
|
| 91 |
+
# Check if response indicates need for examples
|
| 92 |
+
should_retrieve = (
|
| 93 |
+
"retrieve_design_examples" in response_text or
|
| 94 |
+
any(phrase in current_input.lower()
|
| 95 |
+
for phrase in ["show example", "find design", "get example"])
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if should_retrieve:
|
| 99 |
+
# Create tool call message
|
| 100 |
+
state["messages"].append({
|
| 101 |
+
"role": "assistant",
|
| 102 |
+
"content": response_text,
|
| 103 |
+
"tool_calls": [{
|
| 104 |
+
"type": "function",
|
| 105 |
+
"function": {
|
| 106 |
+
"name": "retrieve_design_examples",
|
| 107 |
+
"arguments": json.dumps({
|
| 108 |
+
"conversation": [msg.get("content", msg) if isinstance(msg, dict) else msg
|
| 109 |
+
for msg in messages],
|
| 110 |
+
"num_examples": 1
|
| 111 |
+
})
|
| 112 |
+
}
|
| 113 |
+
}]
|
| 114 |
+
})
|
| 115 |
+
else:
|
| 116 |
+
# Regular response without tool calls
|
| 117 |
+
state["messages"].append({
|
| 118 |
+
"role": "assistant",
|
| 119 |
+
"content": response_text
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
return state
|