Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,29 @@ accelerator = Accelerator()
|
|
9 |
# Print a description of the current configuration
|
10 |
print("Accelerator State:", accelerator.state)
|
11 |
|
12 |
-
# Define the path to your custom model
|
13 |
model_path = (
|
14 |
"../Models/models--sshleifer--distilbart-cnn-12-6/snapshots"
|
15 |
"/a4f8f3ea906ed274767e9906dbaede7531d660ff"
|
16 |
)
|
17 |
|
18 |
-
# Initialize the text summarization pipeline
|
19 |
try:
|
20 |
text_summary = pipeline(
|
21 |
"summarization",
|
22 |
-
model=model_path,
|
23 |
-
|
24 |
-
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
25 |
)
|
26 |
except Exception as e:
|
27 |
print(f"Error initializing the summarization pipeline: {e}")
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# Define the Gradio interface function
|
31 |
def summary(input_text):
|
32 |
try:
|
|
|
33 |
output = text_summary(input_text)
|
34 |
return output[0]['summary_text']
|
35 |
except Exception as e:
|
@@ -41,11 +43,11 @@ gr.close_all()
|
|
41 |
# Define the Gradio interface
|
42 |
demo = gr.Interface(
|
43 |
fn=summary,
|
44 |
-
inputs=
|
45 |
-
outputs=
|
46 |
title="GenAIProject01: Text Summarizer",
|
47 |
-
description="THIS APPLICATION SUMMARIZE INPUT TEXT USING A PRE-TRAINED MODEL."
|
48 |
)
|
49 |
|
50 |
# Launch the Gradio app
|
51 |
-
demo.launch()
|
|
|
9 |
# Print a description of the current configuration
|
10 |
print("Accelerator State:", accelerator.state)
|
11 |
|
12 |
+
# Define the path to your custom model or use a pre-trained Hugging Face model
|
13 |
model_path = (
|
14 |
"../Models/models--sshleifer--distilbart-cnn-12-6/snapshots"
|
15 |
"/a4f8f3ea906ed274767e9906dbaede7531d660ff"
|
16 |
)
|
17 |
|
18 |
+
# Initialize the text summarization pipeline for CPU usage
|
19 |
try:
|
20 |
text_summary = pipeline(
|
21 |
"summarization",
|
22 |
+
model=model_path, # Use the custom model path
|
23 |
+
device=-1 # Force usage of CPU
|
|
|
24 |
)
|
25 |
except Exception as e:
|
26 |
print(f"Error initializing the summarization pipeline: {e}")
|
27 |
+
print("Switching to the default model from Hugging Face.")
|
28 |
+
# Fallback to default model from Hugging Face if the custom model fails
|
29 |
+
text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
30 |
|
31 |
# Define the Gradio interface function
|
32 |
def summary(input_text):
|
33 |
try:
|
34 |
+
# Generate summary using the text_summary pipeline
|
35 |
output = text_summary(input_text)
|
36 |
return output[0]['summary_text']
|
37 |
except Exception as e:
|
|
|
43 |
# Define the Gradio interface
|
44 |
demo = gr.Interface(
|
45 |
fn=summary,
|
46 |
+
inputs=gr.Textbox(label="Input Text to Summarize", lines=6, placeholder="Enter text here..."),
|
47 |
+
outputs=gr.Textbox(label="Summarized Text", lines=4),
|
48 |
title="GenAIProject01: Text Summarizer",
|
49 |
+
description="THIS APPLICATION WILL BE USED TO SUMMARIZE INPUT TEXT USING A PRE-TRAINED MODEL."
|
50 |
)
|
51 |
|
52 |
# Launch the Gradio app
|
53 |
+
demo.launch(share=True)
|