Tech-Meld's picture
Update app.py
8bd959a verified
raw
history blame
No virus
2.33 kB
import gradio as gr
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import spaces
import torch
import re
model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cuda").eval()
processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner")
def modify_caption(caption: str) -> str:
"""
Removes specific prefixes from captions.
Args:
caption (str): A string containing a caption.
Returns:
str: The caption with the prefix removed if it was present.
"""
prefix_substrings = [
('captured from ', ''),
('captured at ', '')
]
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
replacers = {opening: replacer for opening, replacer in prefix_substrings}
def replace_fn(match):
return replacers[match.group(0)]
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
@spaces.GPU
def create_captions_rich(images):
captions = []
prompt = "caption en"
for image in images:
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
input_len = model_inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
modified_caption = modify_caption(decoded)
captions.append(modified_caption)
return captions
css = """
#mkd {
height: 500px;
overflow: auto;
border: 16px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Fine-tuned PaliGemma for SD3 Image Guided Prompt Generation.<center><h1>")
with gr.Tab(label="Image to Prompt for SD3."):
with gr.Row():
with gr.Column():
input_imgs = gr.Image(label="Input Images", type="pil", tool="editor", interactive=True, multiple=True)
submit_btn = gr.Button(value="Start")
outputs = gr.Text(label="Prompts", interactive=False)
submit_btn.click(create_captions_rich, [input_imgs], [outputs])
demo.launch(debug=True)