Tonic commited on
Commit
53e735c
·
1 Parent(s): e5d08ee

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -301
app.py DELETED
@@ -1,301 +0,0 @@
1
- description = '''
2
- # 🙋🏻‍♂️Welcome to🌟Tonic's🦄Qwen-VL-Chat🤩Bot!🚀
3
- This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use 🧑🏻‍🚀qwen/Qwen-VL-Chat🚀 by cloning this space. 🧬🔬🔍 Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
4
- Join us: 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
5
- '''
6
- disclaimer = """
7
- Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
8
- including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
9
- """
10
-
11
- from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, snapshot_download
12
- from argparse import ArgumentParser
13
- from pathlib import Path
14
- import shutil
15
- import copy
16
- import gradio as gr
17
- import os
18
- import re
19
- import secrets
20
- import tempfile
21
-
22
- #GlobalVariables
23
- os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
24
- DEFAULT_CKPT_PATH = 'qwen/Qwen-VL-Chat'
25
- REVISION = 'v1.0.4'
26
- BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
27
- PUNCTUATION = "ï¼ï¼Ÿã€‚ï¼‚ï¼ƒï¼„ï¼…ï¼†ï¼‡ï¼ˆï¼‰ï¼Šï¼‹ï¼Œï¼ï¼ï¼šï¼›ï¼œï¼ï¼žï¼ ï¼»ï¼¼ï¼½ï¼¾ï¼¿ï½€ï½›ï½œï½ï½žï½Ÿï½ ï½¢ï½£ï½¤ã€ã€ƒã€‹ã€Œã€ã€Žã€ã€ã€‘ã€”ã€•ã€–ã€—ã€˜ã€™ã€šã€›ã€œã€ã€žã€Ÿã€°ã€¾ã€¿â€“â€”â€˜â€™â€›â€œâ€â€žâ€Ÿâ€¦â€§ï¹."
28
- uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir()) / "gradio")
29
- tokenizer = None
30
- model = None
31
-
32
- def _get_args() -> ArgumentParser:
33
- parser = ArgumentParser()
34
- parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
35
- help="Checkpoint name or path, default to %(default)r")
36
- parser.add_argument("--revision", type=str, default=REVISION)
37
- parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
38
-
39
- parser.add_argument("--share", action="store_true", default=False,
40
- help="Create a publicly shareable link for the interface.")
41
- parser.add_argument("--inbrowser", action="store_true", default=False,
42
- help="Automatically launch the interface in a new tab on the default browser.")
43
- parser.add_argument("--server-port", type=int, default=8000,
44
- help="Demo server port.")
45
- parser.add_argument("--server-name", type=str, default="127.0.0.1",
46
- help="Demo server name.")
47
-
48
- args = parser.parse_args()
49
- return args
50
-
51
- def handle_image_submission(_chatbot, task_history, file) -> tuple:
52
- print("handle_image_submission called")
53
- if file is None:
54
- print("No file uploaded")
55
- return _chatbot, task_history
56
- print("File received:", file)
57
- file_path = save_image(file, uploaded_file_dir)
58
- print("File saved at:", file_path)
59
- history_item = ((file_path,), None)
60
- _chatbot.append(history_item)
61
- task_history.append(history_item)
62
- return predict(_chatbot, task_history, tokenizer, model)
63
-
64
-
65
- def _load_model_tokenizer(args) -> tuple:
66
- global tokenizer, model
67
- model_id = args.checkpoint_path
68
- model_dir = snapshot_download(model_id, revision=args.revision)
69
- tokenizer = AutoTokenizer.from_pretrained(
70
- model_dir, trust_remote_code=True, resume_download=True,
71
- )
72
-
73
- if args.cpu_only:
74
- device_map = "cpu"
75
- else:
76
- device_map = "auto"
77
-
78
- model = AutoModelForCausalLM.from_pretrained(
79
- model_dir,
80
- device_map=device_map,
81
- trust_remote_code=True,
82
- bf16=True,
83
- resume_download=True,
84
- ).eval()
85
- model.generation_config = GenerationConfig.from_pretrained(
86
- model_dir, trust_remote_code=True, resume_download=True,
87
- )
88
-
89
- return model, tokenizer
90
-
91
-
92
- def _parse_text(text: str) -> str:
93
- lines = text.split("\n")
94
- lines = [line for line in lines if line != ""]
95
- count = 0
96
- for i, line in enumerate(lines):
97
- if "```" in line:
98
- count += 1
99
- items = line.split("`")
100
- if count % 2 == 1:
101
- lines[i] = f'<pre><code class="language-{items[-1]}">'
102
- else:
103
- lines[i] = f"<br></code></pre>"
104
- else:
105
- if i > 0:
106
- if count % 2 == 1:
107
- line = line.replace("`", r"\`")
108
- line = line.replace("<", "&lt;")
109
- line = line.replace(">", "&gt;")
110
- line = line.replace(" ", "&nbsp;")
111
- line = line.replace("*", "&ast;")
112
- line = line.replace("_", "&lowbar;")
113
- line = line.replace("-", "&#45;")
114
- line = line.replace(".", "&#46;")
115
- line = line.replace("!", "&#33;")
116
- line = line.replace("(", "&#40;")
117
- line = line.replace(")", "&#41;")
118
- line = line.replace("$", "&#36;")
119
- lines[i] = "<br>" + line
120
- text = "".join(lines)
121
- return text
122
-
123
- def save_image(image_file, upload_dir: str) -> str:
124
- print("save_image called with:", image_file)
125
- Path(upload_dir).mkdir(parents=True, exist_ok=True)
126
- filename = secrets.token_hex(10) + Path(image_file.name).suffix
127
- file_path = Path(upload_dir) / filename
128
- print("Saving to:", file_path)
129
- with open(image_file.name, "rb") as f_input, open(file_path, "wb") as f_output:
130
- f_output.write(f_input.read())
131
- return str(file_path)
132
-
133
-
134
- def add_file(history, task_history, file):
135
- if file is None:
136
- return history, task_history
137
- file_path = save_image(file)
138
- history = history + [((file_path,), None)]
139
- task_history = task_history + [((file_path,), None)]
140
- return history, task_history
141
-
142
-
143
- def predict(_chatbot, task_history) -> list:
144
- print("predict called")
145
- if not _chatbot:
146
- return _chatbot
147
- chat_query = _chatbot[-1][0]
148
- print("Chat query:", chat_query)
149
-
150
- if isinstance(chat_query, tuple):
151
- query = [{'image': chat_query[0]}]
152
- else:
153
- query = [{'text': _parse_text(chat_query)}]
154
-
155
- print("Query for model:", query)
156
- inputs = tokenizer.from_list_format(query)
157
- tokenized_inputs = tokenizer(inputs, return_tensors='pt')
158
- tokenized_inputs = tokenized_inputs.to(model.device)
159
-
160
- pred = model.generate(**tokenized_inputs)
161
- response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
162
- print("Model response:", response)
163
- if 'image' in query[0]:
164
- image = tokenizer.draw_bbox_on_latest_picture(response)
165
- if image is not None:
166
- image_path = save_image(image, uploaded_file_dir)
167
- _chatbot[-1] = (chat_query, (image_path,))
168
- else:
169
- _chatbot[-1] = (chat_query, "No image to display.")
170
- else:
171
- _chatbot[-1] = (chat_query, response)
172
- return _chatbot
173
-
174
- def save_uploaded_image(image_file, upload_dir):
175
- if image is None:
176
- return None
177
- temp_dir = secrets.token_hex(20)
178
- temp_dir = Path(uploaded_file_dir) / temp_dir
179
- temp_dir.mkdir(exist_ok=True, parents=True)
180
- name = f"tmp{secrets.token_hex(5)}.jpg"
181
- filename = temp_dir / name
182
- image.save(str(filename))
183
- return str(filename)
184
-
185
- def regenerate(_chatbot, task_history) -> list:
186
- if not task_history:
187
- return _chatbot
188
- item = task_history[-1]
189
- if item[1] is None:
190
- return _chatbot
191
- task_history[-1] = (item[0], None)
192
- chatbot_item = _chatbot.pop(-1)
193
- if chatbot_item[0] is None:
194
- _chatbot[-1] = (_chatbot[-1][0], None)
195
- else:
196
- _chatbot.append((chatbot_item[0], None))
197
- return predict(_chatbot, task_history, tokenizer, model)
198
-
199
- def add_text(history, task_history, text) -> tuple:
200
- task_text = text
201
- if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
202
- task_text = text[:-1]
203
- history = history + [(_parse_text(text), None)]
204
- task_history = task_history + [(task_text, None)]
205
- return history, task_history, ""
206
-
207
- def add_file(history, task_history, file):
208
- if file is None:
209
- return history, task_history # Return if no file is uploaded
210
- file_path = file.name
211
- history = history + [((file.name,), None)]
212
- task_history = task_history + [((file.name,), None)]
213
- return history, task_history
214
-
215
- def reset_user_input():
216
- return gr.update(value="")
217
-
218
- def process_response(response: str) -> str:
219
- response = response.replace("<ref>", "").replace(r"</ref>", "")
220
- response = re.sub(BOX_TAG_PATTERN, "", response)
221
- return response
222
-
223
- def process_history_for_model(task_history) -> list:
224
- processed_history = []
225
- for query, response in task_history:
226
- if isinstance(query, tuple):
227
- query = {'image': query[0]}
228
- else:
229
- query = {'text': query}
230
- response = response or ""
231
- processed_history.append((query, response))
232
- return processed_history
233
-
234
- def reset_state(task_history) -> list:
235
- task_history.clear()
236
- return []
237
-
238
-
239
- def _launch_demo(args, model, tokenizer):
240
- uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
241
- Path(tempfile.gettempdir()) / "gradio"
242
- )
243
-
244
- with gr.Blocks() as demo:
245
- gr.Markdown(description)
246
- with gr.Row():
247
- with gr.Column(scale=1):
248
- chatbot = gr.Chatbot(label='Qwen-VL-Chat')
249
- with gr.Column(scale=1):
250
- with gr.Row():
251
- query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
252
- submit_btn = gr.Button("🚀 Submit")
253
- with gr.Row():
254
- file_upload = gr.UploadButton("📁 Upload Image", file_types=["image"])
255
- submit_file_btn = gr.Button("Submit Image")
256
- regen_btn = gr.Button("🤔️ Regenerate")
257
- empty_bin = gr.Button("🧹 Clear History")
258
- task_history = gr.State([])
259
-
260
- submit_btn.click(
261
- fn=predict,
262
- inputs=[chatbot, task_history],
263
- outputs=[chatbot]
264
- )
265
-
266
- submit_file_btn.click(
267
- fn=handle_image_submission,
268
- inputs=[chatbot, task_history, file_upload],
269
- outputs=[chatbot, task_history]
270
- )
271
-
272
- regen_btn.click(
273
- fn=regenerate,
274
- inputs=[chatbot, task_history],
275
- outputs=[chatbot]
276
- )
277
-
278
- empty_bin.click(
279
- fn=reset_state,
280
- inputs=[task_history],
281
- outputs=[task_history],
282
- )
283
-
284
- query.submit(
285
- fn=add_text,
286
- inputs=[chatbot, task_history, query],
287
- outputs=[chatbot, task_history, query]
288
- )
289
-
290
- gr.Markdown(disclaimer)
291
-
292
- demo.queue().launch()
293
-
294
-
295
- def main():
296
- args = _get_args()
297
- model, tokenizer = _load_model_tokenizer(args)
298
- _launch_demo(args, model, tokenizer)
299
-
300
- if __name__ == '__main__':
301
- main()