Spaces:
Paused
Paused
import os | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": {}, | |
"tokenizer_file": {}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} | |
class YiTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a Yi tokenizer. Based on byte-level Byte-Pair-Encoding. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
unk_token="<unk>", | |
bos_token="<|startoftext|>", | |
eos_token="<|endoftext|>", | |
pad_token="<unk>", | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
add_bos_token=True, | |
add_eos_token=False, | |
clean_up_tokenization_spaces=False, | |
**kwargs, | |
): | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
bos_token = ( | |
AddedToken(bos_token, lstrip=False, rstrip=False) | |
if isinstance(bos_token, str) | |
else bos_token | |
) | |
eos_token = ( | |
AddedToken(eos_token, lstrip=False, rstrip=False) | |
if isinstance(eos_token, str) | |
else eos_token | |
) | |
unk_token = ( | |
AddedToken(unk_token, lstrip=False, rstrip=False) | |
if isinstance(unk_token, str) | |
else unk_token | |
) | |
pad_token = ( | |
AddedToken(pad_token, lstrip=False, rstrip=False) | |
if isinstance(pad_token, str) | |
else pad_token | |
) | |
self.vocab_file = vocab_file | |
self.add_bos_token = add_bos_token | |
self.add_eos_token = add_eos_token | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(vocab_file) | |
super().__init__( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
add_bos_token=add_bos_token, | |
add_eos_token=add_eos_token, | |
sp_model_kwargs=self.sp_model_kwargs, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
**kwargs, | |
) | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d): | |
self.__dict__ = d | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
@property | |
def vocab_size(self): | |
"""Returns vocab size""" | |
return self.sp_model.get_piece_size() | |
def get_vocab(self): | |
"""Returns vocab as a dict""" | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text): | |
"""Returns a tokenized string.""" | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.sp_model.piece_to_id(token) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
token = self.sp_model.IdToPiece(index) | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
current_sub_tokens = [] | |
out_string = "" | |
prev_is_special = False | |
for i, token in enumerate(tokens): | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
if not prev_is_special and i != 0: | |
out_string += " " | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
prev_is_special = True | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
prev_is_special = False | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string | |
def save_vocabulary( | |
self, save_directory, filename_prefix: Optional[str] = None | |
) -> Tuple[str]: | |
""" | |
Save the vocabulary and special tokens file to a directory. | |
Args: | |
save_directory (`str`): | |
The directory in which to save the vocabulary. | |
Returns: | |
`Tuple(str)`: Paths to the files saved. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, | |
(filename_prefix + "-" if filename_prefix else "") | |
+ VOCAB_FILES_NAMES["vocab_file"], | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath( | |
out_vocab_file | |
) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = bos_token_id + token_ids_0 + eos_token_id | |
if token_ids_1 is not None: | |
output = output + bos_token_id + token_ids_1 + eos_token_id | |
return output | |
def get_special_tokens_mask( | |
self, | |
token_ids_0: List[int], | |
token_ids_1: Optional[List[int]] = None, | |
already_has_special_tokens: bool = False, | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, | |
token_ids_1=token_ids_1, | |
already_has_special_tokens=True, | |
) | |
bos_token_id = [1] if self.add_bos_token else [] | |
eos_token_id = [1] if self.add_eos_token else [] | |
if token_ids_1 is None: | |
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id | |
return ( | |
bos_token_id | |
+ ([0] * len(token_ids_0)) | |
+ eos_token_id | |
+ bos_token_id | |
+ ([0] * len(token_ids_1)) | |
+ eos_token_id | |
) | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | |
sequence pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
if token_ids_1 is None, only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of ids. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) | |
if token_ids_1 is not None: | |
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) | |
return output | |